

Leitfaden für Debian-Betreuer

Osamu Aoki, Helge Kreutzmann und Mechtilde
Stehmann

30. Januar 2026

Leitfaden für Debian-Betreuer
by Osamu Aoki, Helge Kreutzmann und Mechtilde Stehmann

Copyright © 2014-2026 Osamu Aoki

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ”Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHE-
THER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Diese Anleitung wurde mit den nachfolgenden Dokumenten als Referenz erstellt:

• »Making a Debian Package (AKA the Debmake Manual)«, Copyright © 1997 Jaldhar Vyas.

• »The New-Maintainer’s Debian Packaging Howto«, Copyright © 1997 Will Lowe.

• »Debian-Leitfaden für Neue Paketbetreuer«, Copyright © 1998-2002 Josip Rodin, 2005-2017
Osamu Aoki, 2010 Craig Small und 2010 Raphaël Hertzog.

Die neuste Version dieser Anleitung sollte

• im Paket „debmake-doc“ und

• auf der „Debian-Dokumentations-Website“ verfügbar sein.

i

https://tracker.debian.org/pkg/debmake-doc
https://www.debian.org/doc/devel-manuals

Inhaltsverzeichnis

1 Vorwort 1

2 Überblick 3

3 Voraussetzungen 5
3.1 Leute bei Debian . 5
3.2 Wie Sie beitragen können . 5
3.3 Soziale Dynamik von Debian . 6
3.4 Technische Erinnerungen . 6
3.5 Debian-Dokumentation . 7
3.6 Hilfequellen . 8
3.7 Archivsituation . 8
3.8 Wege, beizutragen . 9
3.9 Neue Beitragende und Betreuer . 10

4 Werkzeugeinrichtung 12
4.1 Email setup . 12
4.2 mc setup . 13
4.3 git setup . 13
4.4 quilt setup . 13
4.5 devscripts setup . 14
4.6 sbuild setup . 14
4.7 Persistent chroot setup . 16
4.8 gbp setup . 17
4.9 HTTP-Proxy . 17
4.10 Privates Debian-Depot . 17
4.11 Virtuelle Maschinen . 17
4.12 Local network with virtual machines . 17

5 Simple packaging 18
5.1 Packaging tarball . 18
5.2 Gesamtbild . 18
5.3 Was ist Debmake? . 20
5.4 Was ist Debuild? . 20
5.5 Schritt 1: Holen der Quellen der Originalautoren . 21
5.6 Step 2: Generate template files with debmake . 22
5.7 Schritt 3: Anpassung der Vorlagendateien . 26
5.8 Step 4: Building package with debuild . 29
5.9 Step 3 (alternatives): Modification to the upstream source 31
5.10 Patch by „diff -u“ approach . 32
5.11 Patch by dquilt approach . 33
5.12 Patch by „dpkg-source --auto-commit“ approach . 34

6 Basics for packaging 37
6.1 Arbeitsablauf des Paketierens . 37
6.2 debhelper package . 39
6.3 Paketname und -version . 40
6.4 Natives Debian-Paket . 41
6.5 debian/rules file . 41
6.6 debian/control file . 42
6.7 debian/changelog file . 43
6.8 debian/copyright file . 44
6.9 debian/patches/* files . 44
6.10 debian/source/include-binaries file . 45

ii

INHALTSVERZEICHNIS

6.11 debian/watch file . 45
6.12 debian/upstream/signing-key.asc file . 45
6.13 debian/salsa-ci.yml file . 46
6.14 Other debian/* files . 46

7 Quality of packaging 51
7.1 Reformat debian/* files with wrap-and-sort . 51
7.2 Validate debian/* files with debputy . 51

8 Sanitization of the source 52
8.1 Fix with Files-Excluded . 52
8.2 Fix with „debian/rules clean“ . 53
8.3 Fix with extend-diff-ignore . 53
8.4 Fix with tar-ignore . 53
8.5 Fix with „git clean -dfx“ . 54

9 More on packaging 55
9.1 Package customization . 55
9.2 Customized debian/rules . 55
9.3 Variables for debian/rules . 56
9.4 New upstream release . 56
9.5 Manage patch queue with dquilt . 57
9.6 Build commands . 57
9.7 Note on sbuild . 57
9.8 Special build cases . 58
9.9 Upload orig.tar.xz . 58
9.10 Skipped uploads . 59
9.11 Bug reports . 59

10 Advanced packaging 61
10.1 Historical perspective . 61
10.2 Current trends . 61
10.3 Note on build system . 62
10.4 Continuous integration . 62
10.5 Bootstrapping . 62
10.6 Compiler hardening . 63
10.7 Reproduzierbares Bauen . 63
10.8 Substvar . 63
10.9 Bibliothekspaket . 64
10.10Multiarch . 65
10.11Aufteilung eines Debian-Binärpakets . 65
10.12Pakettrennungsszenarien und -beispiele . 66
10.13Multiarch library path . 66
10.14Multiarch header file path . 67
10.15Multiarch *.pc file path . 67
10.16Bibliothekssymbole . 67
10.17Library package name . 68
10.18Bibliotheksübergänge . 69
10.19biNMU-sicher . 69
10.20Fehlersuchinformationen . 70
10.21-dbgsym package . 70
10.22debconf . 70

11 Packaging with git 72
11.1 Salsa repository . 73
11.2 Salsa account setup . 73
11.3 Salsa CI service . 73
11.4 Branch names . 73
11.5 Patch unapplied Git repository . 74

iii

INHALTSVERZEICHNIS

11.6 Patch applied Git repository . 74
11.7 Note on gbp . 75
11.8 Note on dgit . 76
11.9 Patch by „gbp-pq“ approach . 77
11.10Manage patch queue with gbp-pq . 77
11.11gbp import-dscs --debsnap . 78
11.12Quasi-native Debian packaging . 78
11.13Git commit history organization . 79

12 Tipps 80
12.1 Build under UTF-8 . 80
12.2 UTF-8 conversion . 80
12.3 Hints for Debugging . 80

13 Tool usages 83
13.1 debdiff . 83
13.2 dget . 83
13.3 mk-origtargz . 84
13.4 origtargz . 84
13.5 git deborig . 84
13.6 dpkg-source -b . 84
13.7 dpkg-source -x . 84
13.8 debc . 84
13.9 piuparts . 84
13.10bts . 85

14 Weitere Beispiele 86
14.1 Cherry-pick templates . 86
14.2 Kein Makefile (Shell, CLI) . 88
14.3 Makefile (Shell, CLI) . 95
14.4 pyproject.toml (Python3, CLI) . 98
14.5 Makefile (Shell, GUI) . 104
14.6 pyproject.toml (Python3, GUI) . 107
14.7 Makefile (Paket mit einem Programm) . 110
14.8 Makefile.in + configure (Paket mit einem Programm) . 113
14.9 Autotools (Paket mit einem Programm) . 117
14.10CMake (Paket mit einem Programm) . 121
14.11Autotools (Paket mit mehreren Programmen) . 125
14.12CMake (multi-binary package) . 132
14.13Internationalization . 137
14.14Details . 143

15 debmake(1)-Handbuchseite 144
15.1 BEZEICHNUNG . 144
15.2 ÜBERSICHT . 144
15.3 BESCHREIBUNG . 144
15.4 Positional arguments . 145
15.5 Options . 145
15.6 BEISPIELE . 146
15.7 HELFERPAKETE . 147
15.8 CAVEAT . 147
15.9 DEBUG . 148
15.10AUTOR . 148
15.11LIZENZ . 148
15.12SIEHE AUCH . 148

iv

INHALTSVERZEICHNIS

16 debmake options 149
16.1 Shortcut option (-i) . 149
16.2 debmake -b . 149
16.3 Snapshot upstream tarball . 150
16.4 debmake -B . 151
16.5 debmake -x . 151

v

Zusammenfassung
Dieser Anleitung »Leitfaden für Debian-Betreuer« (2026-01-30) beschreibt gewöhnlichen Debian-

Benutzern und angehenden Entwicklern den Bau des Debian-Pakets mittels des Befehls debmake.
Diese Anleitung konzentriert sich auf die moderne Paketierart und enthält viele einfache Beispiele.

• POSIX-Shell-Skript-Paketierung

• Python3-Skript-Paketierung

• C mit Makefile/Autotools/CMake

• mehrere Binärpakete mit Laufzeitbibliotheken usw.

Diese »Anleitung für Debian-Betreuer« kann als Nachfolger des »Debian-Leitfaden für Neue Paket-
betreuer« angesehen werden.

Kapitel 1

Vorwort

Falls Sie ein etwas erfahrener Debian-Benutzer 1 sind, könnten Ihnen die folgende Situationen bekannt
vorkommen:

• Sie möchten ein bestimmtes, noch nicht im Debian-Archiv verfügbares Softwarepaket installieren.

• Sie möchten ein Debian-Paket mit einer neueren Version der Originalautoren aktualisieren.

• Sie möchten Fehler in einem Debian-Paket mit Patches korrigieren.

If you want to create a Debian package to fulfill these needs and share your work with the community,
you are the target audience of this guide as a prospective Debian maintainer. 2 Welcome to the Debian
community.

Debian has many social and technical rules and conventions to follow, as it is a large volunteer
organization with a rich history. Debian has also developed an extensive array of packaging and archive
maintenance tools to build consistent sets of binary packages that address many technical objectives:

• packages have clearly specified package dependencies and patches and build correctly from scratch
in a clean build environment („Abschnitt 6.6“, „Abschnitt 6.9“, „Abschnitt 4.6“)

• Paketbau unter vielen Architekturen („Abschnitt 9.3“)

• builds are reproducible („Abschnitt 10.7“)

• multiarch is supported („Abschnitt 10.10“)

• bootstrapping new architectures is possible („Abschnitt 10.5“)

• builds use specific compiler flags to harden security („Abschnitt 10.6“)

• packages are split optimally into multiple binary packages („Abschnitt 10.11“)

• library names and contents are managed to ensure smooth transitions on upgrades („Abschnitt 10.18“)

• installations use interactive prompts correctly (if at all) („Abschnitt 10.22“)

• continuous integration is used to ensure quality („Abschnitt 10.4“)

• …

These factors can be overwhelming for many new prospective Debian maintainers. This guide aims
to provide entry points to help them get started. It covers the following:

• Was Sie wissen sollten, bevor Sie als angehender Betreuer bei Debian mitmachen.

• Wie es ausschaut, ein einfaches Debian-Paket zu erstellen.

• Welche Art von Regeln für das Erstellen des Debian-Pakets existieren.

1You need to know a little about Unix programming, but you don’t need to be an expert. You can learn about basic Debian
system handling from the „Debian Reference“. It also contains pointers for learning about Unix programming.

2If you’re not interested in sharing the Debian package, you can address your local needs by compiling and installing the fixed
upstream source package into /usr/local/.

1

https://www.debian.org/doc/user-manuals#quick-reference

KAPITEL 1. VORWORT

• Tips for making the Debian package with minimal effort.

• Examples of making Debian packages in typical scenarios.

The author recognized the limitations of updating the original „New Maintainers’ Guide“ with the dh-
make package and decided to create an alternative tool with accompanying documentation to address
modern requirements such as multi-arch. This resulted in the debmake package, initially released as
version 4.0 in 2013. The current debmake version is 5.1.0. It comes with this updated „Guide for Debian
Maintainers“ in the debmake-doc package (version: 1.25-1). (In 2016, dh-make was ported from Perl
to Python with updated features.)

Many chores and tips have been integrated into the debmake command allowing this guide to be
terse. This guide also offers many packaging examples for you to get started.

Achtung

Es bedarf vieler Stunden, um Debian-Pakete zu erstellen und zu betreuen. Der
Debian-Betreuer muss sowohl technisch kompentent als auch sorgfältig
sein, um diese Herausforderung zu meistern.

Some important topics are explained in detail. While some may seem irrelevant to you, please be
patient. Certain corner cases are omitted, and some topics are only covered through external references.
These are intentional choices to keep this guide simple and maintainable.

2

https://www.debian.org/doc/manuals/debmake-doc/
https://www.debian.org/doc/manuals/debmake-doc/

Kapitel 2

Überblick

The Debian packaging of the package-1.0.tar.xz, containing a simple C source following the „GNU Co-
ding Standards“ and „FHS“, can be done with the debmake command as follows.

[base_dir] $ tar --xz -xvf package-1.0.tar.xz
[base_dir] $ cd package-1.0
[package-1.0] $ debmake

... Make manual adjustments of generated configuration files
[package-1.0] $ debuild

Falls die manuellen Anpassungen der erstellten Konfigurationsdateien übersprungen werden, fehlt
dem erstellten Binärpaket eine sinnvolle Paketbeschreibung. Es funktioniert aber dennoch unter dem
Befehl dpkg gut für Ihren lokalen Einsatz.

Achtung

The debmake command only provides decent template files. These template
files must be manually adjusted to their perfection to comply with the strict qua-
lity requirements of the Debian archive, if the generated package is intended for
general consumption.

If you are new to Debian packaging, focus on understanding the overall process rather than worrying
about the details.

If you are familiar with Debian packaging, you’ll notice that debmake is similar to the dh_make
command. This is because debmake is designed to replace the functionality historically provided by
dh_make. 1

Der Befehl debmake wurde mit den folgenden Funktionalitäten gestaltet:

• moderner Paketierstil

– debian/copyright: „DEP-5“-konform
– debian/control: substvar support, multiarch support, multi binary packages, …
– debian/rules: dh syntax, compiler hardening options, …

• Flexibilität

– many options (see „Abschnitt 16.2“, „Kapitel 15“, and „Kapitel 16“)

• vernünftige Standardaktionen

– Ausführung ohne Unterbrechung mit sauberen Ergebnissen
– Erstellung des Multiarch-Pakets, außer die Option -m wird explizit angegeben
– generate the non-native Debian package with the Debian source format „3.0 (quilt)“, unless

the -n option is explicitly specified.
1Before dh_make, the deb-make command was popular. The current debmake package starts its version from 4.0 to avoid

version conflicts with the obsolete debmake package, which provided the „deb-make“ command.

3

https://www.gnu.org/prep/standards/
https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://dep-team.pages.debian.net/deps/dep5/

KAPITEL 2. ÜBERBLICK

The debmake command delegates most of the heavy lifting to its back-end packages: debhelper,
dpkg-dev, devscripts, sbuild, schroot, licensecheck, licenserecon, etc.

Tipp

Ensure that you properly quote the arguments of the -b, -f, and -w options to
protect them from shell interference.

Tipp

Das nicht-native Debian-Paket ist das normale Debian-Paket.

Tipp

Das detaillierte Protokoll aller Paketbaubeispiele in diesem Dokument kann durch
Folgen der Anweisungen in „Abschnitt 14.14“ erhalten werden.

4

Kapitel 3

Voraussetzungen

Here are the prerequisites you need to understand before getting involved with Debian.

3.1 Leute bei Debian
Es nehmen verschiedene Arten von Leuten mit verschieden Rollen rund um Debian teil:

• Originalautor: die Person, die das ursprüngliche Programm erstellte.

• Originalbetreuer: Die Person, die derzeit das Programm betreut.

• Betreuer: Die Person, die das Debian-Paket des Programms erstellt.

• Sponsor: Eine Person, die den Betreuern beim Hochladen (nach Prüfen des Inhalts) des Pakets
in das offizielle Debian-Paketarchiv hilft.

• Mentor: Eine Person, die neuen Betreuern beim Paketieren usw. hilft.

• Debian-Entwickler (DD): ein Mitglied des Debian-Projekts mit vollen Hochlade-Rechten in das
offizielle Debian-Paketarchiv.

• Debian-Betreuer (DM): Eine Person, mit begrenzten Hochladerechten in das offizielle Debian-
Paketarchiv.

Please note that you can’t become an official Debian Developer (DD) overnight, as it requires more
than just technical skills. Don’t be discouraged by this. If your work is useful to others, you can still upload
your package either as a maintainer through a sponsor or as a Debian Maintainer.

Please note that you don’t need to create new packages to become an official Debian Developer.
Contributing to existing packages can also provide a path to becoming an official Debian Developer.
There are many packages waiting for good maintainers (see „” ̀Abschnitt 3.8“ ̀”).

3.2 Wie Sie beitragen können
Bitte lesen Sie die folgenden Dokumenten, um zu verstehen, wie Sie zu Debian beitragen können:

• „Wie können Sie Debian helfen?“ (offiziell)

• „The Debian GNU/Linux FAQ, Chapter 13 - Contributing to the Debian Project“ (semi-official)

• „Debian Wiki, HelpDebian“ (ergänzend)

• „Debian New Member site“ (offiziell)

• „Debian Mentors FAQ“ (ergänzend)

5

https://www.debian.org/intro/help
https://www.debian.org/doc/manuals/debian-faq/contributing
https://wiki.debian.org/HelpDebian
https://nm.debian.org/
https://wiki.debian.org/DebianMentorsFaq

KAPITEL 3. VORAUSSETZUNGEN 3.3. SOZIALE DYNAMIK VON DEBIAN

3.3 Soziale Dynamik von Debian
Bitte verstehen Sie die soziale Dynamik, um sich für die Wechselwirkungen mit Debian vorzubereiten:

• We are all volunteers.

– You can’t impose tasks on others.
– You should be self-motivated to do things.

• Freundliche Zusammenarbeit ist der Motor.

– Ihr Beitrag sollte Andere nicht überlasten.
– Ihr Beitrag hat nur Wert, wenn ihn andere wertschätzen.

• Debian is not a school where you get automatic attention from teachers.

– You should be able to learn many things independently.
– Attention from other volunteers is a scarce resource.

• Debian verbessert sich ständig.

– Es wird erwartet, dass Sie hochqualitative Pakete erstellen.
– Sie sollten sich Änderungen anpassen.

Da in der restlichen Anleitung nur auf die technischen Aspekte der Paketierung fokusiert wird, wird
auf folgendes zum Verständnis der sozialen Dynamik von Debian verwiesen:

• „Debian: 17 years of Free Software, ”do-ocracy”, and democracy“ (Introductory slides by the ex-
DPL)

3.4 Technische Erinnerungen
Here are some technical reminders to help other maintainers work on your package easily and effectively,
maximizing the output of Debian as a whole.

• Ermöglichen Sie in Ihrem Paket eine leichte Fehlersuche.

– Halten Sie Ihr Paket einfach.
– Machen Sie Ihr Paket nicht zu komplex.

• Halten Sie Ihr Paket gut dokumentiert.

– Verwenden Sie einen lesbaren Code-Stil.
– Fügen Sie in den Code Kommentare ein.
– Formatieren Sie Code konsistent.
– Verwalten Sie das Git-Depot 1 des Pakets.

Anmerkung

Die Fehlersuche in Software kann mehr Zeit verbrauchen, als die eigentliche Er-
stellung.

It is unwise to run your base system under the unstable suite, even for development purposes.

• Creation and verification of binary deb packages should use a minimal unstable chroot as descri-
bed in „Abschnitt 4.6“.

1Die überwältigende Mehrheit der Debian-Betreuer verwenden git statt anderer VCS-Systeme wie hg, bzr, usw.

6

http://upsilon.cc/~zack/talks/2011/20110321-taipei.pdf

KAPITEL 3. VORAUSSETZUNGEN 3.5. DEBIAN-DOKUMENTATION

• Basic interactive package development activities should use an unstable chroot as described in
„Abschnitt 4.7“.

Anmerkung

Advanced package development activities, such as testing full Desktop systems,
network daemons, and system installer packages, should use the unstable suite
running under „virtualization“.

3.5 Debian-Dokumentation
Bitte lesen Sie nach Bedarf den einschlägigen Anteil der neusten Debian-Dokumentation, um perfekte
Debian-Pakete zu erstellen:

• „Debian Policy Manual“

– The official „must follow“ rules (https://www.debian.org/doc/devel-manuals#policy)

• „Debian Developer’s Reference“

– The official „best practice“ document (https://www.debian.org/doc/devel-manuals#devref)

• „Guide for Debian Maintainers“ — this guide

– A „tutorial reference“ document (https://www.debian.org/doc/devel-manuals#debmake-doc)

All these documents are published on https://www.debian.org using the unstable suite versions of
corresponding Debian packages. If you wish to have local access to all these documents from your base
system, please consider using techniques such as „apt-pinning“ and „chroot“.

Falls dieser Leitfaden der offiziellen Debian-Dokumentation widerspricht, dann ist die offizielle Debian-
Dokumentation korrekt. Bitte reichen Sie mittels des Befehls reportbug (auf englisch) einen Fehlerbe-
richt gegen das Paket debmake-doc ein.

Hier sind alternative Anleitungen, die Sie zusammen mit diesem Leitfaden lesen können:

• „Debian Packaging Tutorial“

– https://www.debian.org/doc/devel-manuals#packaging-tutorial
– https://packages.qa.debian.org/p/packaging-tutorial.html

• „Ubuntu Packaging Guide“ (Ubuntu is Debian based.)

– http://packaging.ubuntu.com/html/

• „Debian New Maintainers’ Guide“ (predecessor of this tutorial, deprecated)

– https://www.debian.org/doc/devel-manuals#maint-guide
– https://packages.qa.debian.org/m/maint-guide.html

Tipp

When reading these, you may consider using the debmake command in place
of the dh_make command.

7

https://www.debian.org/doc/manuals/debian-reference/ch09.en.html#_multiple_desktop_systems
https://www.debian.org/doc/devel-manuals#policy
https://www.debian.org/doc/devel-manuals#devref
https://www.debian.org/doc/devel-manuals#debmake-doc
https://www.debian.org
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_tweaking_candidate_version
https://en.wikipedia.org/wiki/Chroot
https://www.debian.org/doc/devel-manuals#packaging-tutorial
https://packages.qa.debian.org/p/packaging-tutorial.html
http://packaging.ubuntu.com/html/
https://www.debian.org/doc/devel-manuals#maint-guide
https://packages.qa.debian.org/m/maint-guide.html

KAPITEL 3. VORAUSSETZUNGEN 3.6. HILFEQUELLEN

3.6 Hilfequellen
Before deciding to ask your question in a public forum, please do your part by reading the relevant
documentation:

• Paketierinformationen, die über die Befehle aptitude, apt-cache und dpkg verfügbar sind.

• Dateien in /usr/share/doc/Paket für alle einschlägigen Pakete.

• Inhalte von man Befehl für alle einschlägigen Befehle.

• Inhalte von info Befehl für alle einschlägigen Befehle.

• Inhalte von „debian-mentors@lists.debian.org-Mailinglist-Archiv“.

• Inhalte von „debian-devel@lists.debian.org-Mailinglist-Archiv“.

You can find your desired information effectively by using a well-formed search string such as ”key-
word site:lists.debian.org” to limit the search domain of the web search engine.

Creating a small test package is a good way to learn the details of packaging. Inspecting existing
well-maintained packages is the best way to learn how other people make packages.

Falls Sie immer noch Fragen über das Paketieren haben, können Sie die Fragen direkt stellen (auf
Englisch):

• debian-mentors@lists.debian.org mailing list. (This mailing list is for the novice.)

• debian-devel@lists.debian.org mailing list. (This mailing list is for the expert.)

• IRC such as #debian-mentors.

• Teams focusing on a specific set of packages. (Full list at https://wiki.debian.org/Teams)

• Sprachspezifische Mailinglisten

– „debian-devel-{french,italian,portuguese,spanish}@lists.debian.org“
– „debian-chinese-gb@lists.debian.org“ (Diese Mailingliste ist für allgemeine Diskussion auf

(vereinfachtem) Chinesisch.)
– „debian-devel@debian.or.jp“

More experienced Debian developers will gladly help you if you ask properly after making the required
efforts.

Achtung

Debian development is a moving target. Some information found on the web may
be outdated, incorrect, or non-applicable. Please use such information carefully.

3.7 Archivsituation
Bitte begreifen Sie die Situation des Debian-Archivs.

• Debian hat bereits Pakete für die meisten Programmarten.

• Die Anzahl an Paketen im Debian-Archiv ist mehrere zehnmal so groß wie die Anzahl der aktiven
Betreuer.

• Bei einigen Paketen fehlt leider die entsprechende Aufmerksamkeit des Betreuers.

8

https://lists.debian.org/debian-mentors/
https://lists.debian.org/debian-devel/
mailto:debian-mentors@lists.debian.org
mailto:debian-devel@lists.debian.org
https://www.debian.org/support#irc
https://wiki.debian.org/Teams
https://lists.debian.org/devel.html
https://lists.debian.org/debian-chinese-gb/
http://www.debian.or.jp/community/ml/openml.html#develML

KAPITEL 3. VORAUSSETZUNGEN 3.8. WEGE, BEIZUTRAGEN

Daher werden Beiträge zu Paketen, die sich bereits im Archiv befinden, von anderen Betreuern weit-
aus mehr geschätzt (und erhalten eher Sponsoring für das Hochladen).

Tipp

The wnpp-alert command from the devscripts package can check for installed
packages that are up for adoption or orphaned.

Tipp

The how-can-i-help package can show opportunities for contributing to Debian
based on packages installed locally.

3.8 Wege, beizutragen
Hier ist Pseudo-Python-Code für Ihre Wege, zu Debian mit einem Programm beizutragen:

if exist_in_debian(program):
if is_team_maintained(program):
join_team(program)

if is_orphaned(program): # maintainer: Debian QA Group
adopt_it(program)

elif is_RFA(program): # Request for Adoption
adopt_it(program)

else:
if need_help(program):
contact_maintainer(program)
triaging_bugs(program)
preparing_QA_or_NMU_uploads(program)

else:
leave_it(program)

else: # new packages
if not is_good_program(program):
give_up_packaging(program)

elif not is_distributable(program):
give_up_packaging(program)

else: # worth packaging
if is_ITPed_by_others(program):
if need_help(program):
contact_ITPer_for_collaboration(program)

else:
leave_it_to_ITPer(program)

else: # really new
if is_applicable_team(program):
join_team(program)

if is_DFSG(program) and is_DFSG(dependency(program)):
file_ITP(program, area="main") # This is Debian

elif is_DFSG(program):
file_ITP(program, area="contrib") # This is not Debian

else: # non-DFSG
file_ITP(program, area="non-free") # This is not Debian

package_it_and_close_ITP(program)

Hier:

• Für das Prüfen von exist_in_debian() und is_team_maintained();:

9

KAPITEL 3. VORAUSSETZUNGEN 3.9. NEUE BEITRAGENDE UND BETREUER

– der Befehl aptitude
– „Debian-Pakete“-Webseite
– Debian wiki „Teams“ page

• Für das Prüfen von is_orphaned(), is_RFA() und is_ITPed_by_others():

– Die Ausgabe des Befehls wnpp-alert.
– „Arbeit-bedürfende und voraussichtliche Pakete“
– „Debian-Fehlerberichtsprotokolle: Fehler im Pseudo-Paket wnpp in Unstable“
– „Debian-Pakete, die liebgewonnen werden müssen“
– „Durchsuchen Sie wnpp Fehlerberichte basierend auf Debtags“

• Für das Prüfen von is_good_program():

– Das Programm sollte nützlich sein.
– Das Programm sollte keine Sicherheits- und Wartungsbedenken in das Debian-System ein-

bringen.
– Das Programm sollte gut dokumentiert sein und sein Code muss verständlich (d.h. nicht ver-

schleiert) sein.
– Die Autoren des Programms stimmen mit der Paketierung überein und sind mit Debian ein-

vernehmlich. 2

• Für die Prüfung von is_it_DFSG() und is_its_dependency_DFSG():

– „Debian Richtlinien für Freie Software“ (DFSG).

• Für die Prüfung von is_it_distributable():

– Die Software muss eine Lizenz haben und sie sollte ihre Verbreitung erlauben.

You either need to file an ITP or adopt a package to start working on it. See the „Debian Developer’s
Reference“:

• „5.1. Neue Pakete“.

• „5.9. Verschieben, Entfernen, Verwaisen, Adoptieren und Wiedereinführen von Paketen“.

3.9 Neue Beitragende und Betreuer
Die neuen Beitragenden und Betreuer könnten sich fragen, was sie lernen sollten, um zu Debian beizu-
tragen. Hier sind meine Vorschläge, abhängig von Ihrem Schwerpunkt:

• Paketierung

– Grundlagen der POSIX-Shell und Make.
– Etwas rudimentäres Wissen von Perl und Python.

• Übersetzungen

– Grundlagen, wie das PO-basierte Übersetzungssystem funktioniert.

• Dokumentation

– Basics of text markups (XML, ReST, Wiki, …).

Der neue Beitragende und Betreuer könnte sich fragen, wo er mit Beiträgen zu Debian beginnen
sollte. Hier sind meine Vorschläge, abhängig von Ihren Fertigkeiten:

2Das ist nicht die absolute Voraussetzung. Die ablehnende Einstellung der Originalautoren kann für uns alle zu einem großen
Ressourcenproblem werden. Die freundlichen Originalautoren können konsultiert werden, um alle Probleme mit dem Programm
zu lösen.

10

https://www.debian.org/distrib/packages
https://wiki.debian.org/Teams
https://www.debian.org/devel/wnpp/
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=wnpp;dist=unstable
https://wnpp.debian.net/
https://wnpp-by-tags.debian.net/
https://www.debian.org/social_contract#guidelines
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#newpackage
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#archive-manip

KAPITEL 3. VORAUSSETZUNGEN 3.9. NEUE BEITRAGENDE UND BETREUER

• POSIX-Shell-, Perl- und Python-Fertigkeiten:

– Schicken Sie Patches zum Debian-Installer.
– Schicken Sie Patches an Paketierhelferskripte von Debian wie Devscripts, Sbuild, Schroot

usw., die in diesem Dokument erwähnt sind.

• C- und C++-Fähigkeiten:

– Schicken Sie Patches an Pakete mit den Prioritäten required und important.

• Sprachfähigkeiten jenseits von Englisch:

– Schicken Sie Patches zu den PO-Dateien des Debian-Installers.
– Schicken Sie Patches an den PO-Dateien der Pakete mit den Prioritäten required und im-

portant.

• Dokumentations-Fähigkeiten

– Aktualisieren Sie Inhalte auf „Debian-Wiki“.
– Schicken Sie Patches an das existierende „Debian-Dokumentation“.

Diese Aktivitäten sollten Ihnen einen guten Kontakt zu den anderen Debian-Menschen verschaffen,
um Ihre Glaubwürdigkeit zu begründen.

Der unerfahrene Betreuer sollte das Paketieren von Programmen mit einer hohen Sicherheitsexpo-
sition vermeiden:

• Setuid- oder Setgid-Programme

• Daemon-Programme

• Programme, die in den Verzeichnissen /sbin/ oder /usr/sbin/ installiert werden

Wenn Sie mehr Erfahrung beim Paketieren gesammelt haben, werden Sie in der Lage sein, solche
Programme zu paketieren.

11

https://wiki.debian.org/
https://www.debian.org/doc/

Kapitel 4

Werkzeugeinrichtung

Das Paket build-essential muss in Ihrer Bauumgebung installiert sein.
The devscripts package should be installed in the development environment of the maintainer.
It is a good idea to install and set up all of the popular set of packages mentioned in this chapter.

These enable us to share the common baseline working environment, although these are not necessarily
absolute requirements.

Please also consider to install the tools mentioned in the „Overview of Debian Maintainer Tools“ in
the „Debian Developer’s Reference“, as needed.

Achtung

Die hier vorgestellte Einrichtung der Werkzeuge ist nur als Beispiel gedacht und
kann nicht mit den neuesten im System installierten Paketen übereinstimmen.
Debian-Entwicklung ist ein voranschreitendes Ziel. Lesen Sie die relevante Do-
kumentation und aktualisieren Sie Ihre Konfiguration wo notwendig.

4.1 Email setup
Verschiedene Debian-Betreuungswerkzeuge erkennen Ihre zu verwendene E-Mail-Adresse und Ihren
Namen über die Shell-Umgebungsvariablen $DEBEMAIL und $DEBFULLNAME.

Let’s set these environment variables by adding the following lines to ~/.bashrc 1.
Fügen Sie zur ~/.bashrc folgendes hinzu

DEBEMAIL="osamu@debian.org"
DEBFULLNAME="Osamu Aoki"
export DEBEMAIL DEBFULLNAME

Anmerkung

The above is for the author of this manual. The configuration and operation ex-
amples presented in this manual use these email address and name settings.
You must use your email address and name for your system.

1Hierbei wird angenommen, dass Sie die Bash als Ihre Anmelde-Shell verwenden. Falls Sie eine andere Anmelde-Shell, wie
die Z-Shell, verwenden, verwenden Sie deren entsprechenden Konfigurationsdateien statt ~/.bashrc.

12

https://www.debian.org/doc/manuals/developers-reference/tools.html

KAPITEL 4. WERKZEUGEINRICHTUNG 4.2. MC SETUP

4.2 mc setup
Der Befehl mc bietet Ihnen einen sehr leichten Zugang zur Verwaltung von Dateien. Es kann binäre deb-
Dateien zum Prüfen ihrer Inhalte öffnen, indem die Eingabetaste über der binären deb-Datei gedrückt
wird. Es verwendet den Befehl dpkg-deb als seinen Backend. Lassen Sie es uns wie folgt einrichten,
um leichtes chdir zu ermöglichen.

Fügen Sie zur ~/.bashrc folgendes hinzu

mc related
if [-f /usr/lib/mc/mc.sh]; then
. /usr/lib/mc/mc.sh

fi

4.3 git setup
Heutzutage ist der Befehl git ein unverzichtbares Werkzeug, um den Quellbau mit Verlauf zu verwalten.

Die globale Benutzerkonfiguration für den Befehl git, wie Ihren Namen und Ihre E-Mail-Adresse,
können in ~/.gitconfig wie folgt gesetzt werden:

[~] $ git config --global user.name "Osamu Aoki"
[~] $ git config --global user.email osamu@debian.org

Falls Sie an die CVS- oder Subversion-Befehle gewöhnt sind, möchten Sie vielleicht eine Reihe von
Aliasen wie folgt setzen:

[~] $ git config --global alias.ci "commit -a"
[~] $ git config --global alias.co checkout

Sie können Ihre globale Konfiguration wie folgt prüfen:

[~] $ git config --global --list

Tipp

Es ist essentiell, einige GUI git-Werkzeuge wie gitk oder gitg zu verwenden, um
effektiv mit der Chronik des git-Depots zu arbeiten.

4.4 quilt setup
Der Befehl quilt bietet eine grundlegende Methode zur Aufzeichnung von Änderungen. Für die Debian-
Paketierung sollte es so angepasst werden, dass Änderungen im debian/patches/-Verzeichnis anstelle
des voreingestellten patches/-Verzeichnisses aufgezeichnet werden.

Um zu vermeiden, dass das Verhalten des Befehls quilt selbst geändert wird, erstellen wir einen Alias
dquilt für das Debian-Paket, indem wir die folgenden Zeilen in die Datei ~/.bashrc einfügen. Die zweite
Zeile bietet die gleiche Shell-Vervollständigungs-Funktion des quilt-Befehls für den dquilt-Befehl.

Fügen Sie zur ~/.bashrc folgendes hinzu

alias dquilt="quilt --quiltrc=${HOME}/.quiltrc-dpkg"
. /usr/share/bash-completion/completions/quilt
complete -F _quilt_completion $_quilt_complete_opt dquilt

Dann erstellen wir ~/.quiltrc-dpkg wie folgt.

d=.
while [! -d $d/debian -a `readlink -e $d` != /];

do d=$d/..; done

13

KAPITEL 4. WERKZEUGEINRICHTUNG 4.5. DEVSCRIPTS SETUP

if [-d $d/debian] && [-z $QUILT_PATCHES]; then
if in Debian packaging tree with unset $QUILT_PATCHES
QUILT_PATCHES="debian/patches"
QUILT_PATCH_OPTS="--reject-format=unified"
QUILT_DIFF_ARGS="-p ab --no-timestamps --no-index --color=auto"
QUILT_REFRESH_ARGS="-p ab --no-timestamps --no-index"
QUILT_COLORS="diff_hdr=1;32:diff_add=1;34:diff_rem=1;31:diff_hunk=1;33:"
QUILT_COLORS="${QUILT_COLORS}diff_ctx=35:diff_cctx=33"
if ! [-d $d/debian/patches]; then mkdir $d/debian/patches; fi

fi

See quilt(1) and „How To Survive With Many Patches or Introduction to Quilt (quilt.html)“ on how to
use the quilt command.

Siehe „Abschnitt 5.9“ für beispielhafte Verwendungen.
Note that „gbp pq“ is able to consume existing debian/patches, automate updating and modifying

the patches, and export them back into debian/patches, all without using quilt nor the need to learn or
configure quilt.

4.5 devscripts setup
Der Befehl debsign, der im Paket devscripts enthalten ist, wird verwendet, um das Debian-Paket mit
Ihrem privaten GPG-Schlüssel zu signieren.

Der Befehl debuild, der im Paket devscripts enthalten ist, baut das Binärpaket und überprüft es mit
dem Befehl lintian. Es ist praktisch, ausführliche Ausgaben von dem Befehl lintian zu haben.

Sie können diese in ~/.devscripts wie folgt einrichten.

DEBUILD_DPKG_BUILDPACKAGE_OPTS="-i -I -us -uc"
DEBUILD_LINTIAN_OPTS="-i -I --show-overrides"
DEBSIGN_KEYID="Your_GPG_keyID"

The -i and -I options in DEBUILD_DPKG_BUILDPACKAGE_OPTS for the dpkg-source command
help rebuilding of Debian packages without extraneous contents (see „Kapitel 8“).

Derzeit ist ein RSA-Schlüssel mit 4096 Bits eine gute Idee. Siehe „Einen neuen GPG-Key erstellen“.

4.6 sbuild setup
The sbuild package provides a clean room („chroot“) build environment. It offers this efficiently with the
help of schroot using the bind-mount feature of the modern Linux kernel.

Since it is the same build environment as the Debian’s buildd infrastructure, it is always up to date
and comes full of useful features.

It can be customized to offer following features:

• Das Schroot-Paket, um die Geschwindigkeit der Chroot-Erstellung zu erhöhen.

• Das lintian-Paket, um Fehler im Paket zu finden.

• Das Piuparts-Paket, um Fehler im Paket zu finden.

• Das Autopkgtest-Paket, um Fehler im Paket zu finden.

• Das ccache-Paket, um die gcc-Geschwindigkeit zu erhöhen. (optional)

• Das libeatmydata1-Paket zur Erhöhung der dpkg-Geschwindigkeit. (optional)

• Die parallele make, um die Baugeschwindigkeit zu erhöhen. (optional)

Let’s set up sbuild environment 2:

[~] $ sudo apt install sbuild piuparts autopkgtest lintian
[~] $ sudo apt install sbuild-debian-developer-setup
[~] $ sudo sbuild-debian-developer-setup -s unstable

2Be careful since some older HOWTOs may use different chroot setups.

14

file:///usr/share/doc/quilt/quilt.html
https://manpages.debian.org/unstable/git-buildpackage/gbp-pq.1.en.html
https://keyring.debian.org/creating-key.html
https://en.wikipedia.org/wiki/Chroot
https://buildd.debian.org/

KAPITEL 4. WERKZEUGEINRICHTUNG 4.6. SBUILD SETUP

Let’s update your group membership to include sbuild and verify it:

[~] $ newgrp -
[~] $ id
uid=1000(<yourname>) gid=1000(<yourname>) groups=...,132(sbuild)

Here, „reboot of system“ or „kill -TERM -1“ can be used instead to update your group membership 3
.

Let’s create the configuration file ~/.local/sbuild/config.pl in line with recent Debian practice of
„source-only-upload“ as:

[~] $ cat >~/.local/sbuild/config.pl << 'EOF'
##
PACKAGE BUILD RELATED (source-only-upload as default)
##
-d
$distribution = 'unstable';
-A
$build_arch_all = 1;
-s
$build_source = 1;
--source-only-changes
$source_only_changes = 1;
-v
$verbose = 1;

##
POST-BUILD RELATED (turn off functionality by setting variables to 0)
##
$run_lintian = 1;
$lintian_opts = ['-i', '-I'];
$run_piuparts = 1;
$piuparts_opts = ['--schroot', 'unstable-amd64-sbuild'];
$run_autopkgtest = 1;
$autopkgtest_root_args = '';
$autopkgtest_opts = ['--', 'schroot', '%r-%a-sbuild'];

##
PERL MAGIC
##
1;
EOF

Anmerkung

There are some exceptional cases such as NEW uploads, uploads with NEW
binary packages, and security uploads where you can’t do source-only-upload
but are required to upload with binary packages. The above configuration needs
to be adjusted for those exceptional cases.

Following document assumes that sbuild is configured this way.
Edit this to your needs. Post-build tests can be turned on and off by assigning 1 or 0 to the correspon-

ding variables,

3Simply „logout and login under some modern GUI Desktop environment“ may not update your group membership.

15

https://wiki.debian.org/SourceOnlyUpload
https://wiki.debian.org/SourceOnlyUpload

KAPITEL 4. WERKZEUGEINRICHTUNG 4.7. PERSISTENT CHROOT SETUP

Warnung

Die optionale Anpassung kann negative Auswirkungen haben. Im Zweifelsfall de-
aktivieren Sie sie.

Anmerkung

The parallel make may fail for some existing packages and may make the build
log difficult to read.

Tipp

Many sbuild related hints are available at „Abschnitt 9.7“ and
„https://wiki.debian.org/sbuild“ .

4.7 Persistent chroot setup

Anmerkung

Use of independent copied chroot filesystem prevents contaminating the source
chroot used by sbuild.

For building new experimental packages or for debugging buggy packages, let’s setup dedicated
persistent chroot „source:unstable-amd64-desktop“ by:

[~] $ sudo cp -a /srv/chroot/unstable-amd64-sbuild /srv/chroot/unstable-amd64- ←↩
desktop

[~] $ sudo tee /etc/schroot/chroot.d/unstable-amd64-desktop-XXXXXX << EOF
[unstable-amd64-desktop]
description=Debian sid/amd64 persistent chroot
groups=root,sbuild
root-groups=root,sbuild
profile=desktop
type=directory
directory=/srv/chroot/unstable-amd64-desktop
union-type=overlay
EOF

Here, desktop profile is used instead of sbuild profile. Please make sure to adjust /etc/schroot/desktop/fstab
to make package source accessible from inside of the chroot.

You can log into this chroot „source:unstable-amd64-desktop“ by:

[~] $ sudo schroot -c source:unstable-amd64-desktop

16

https://wiki.debian.org/sbuild

KAPITEL 4. WERKZEUGEINRICHTUNG 4.8. GBP SETUP

4.8 gbp setup
The git-buildpackage package offers the gbp(1) command. Its user configuration file is ~/.gbp.conf.

Configuration file for "gbp <command>"

[DEFAULT]
the default build command:
builder = sbuild
use pristine-tar:
pristine-tar = True
Use color when on a terminal, alternatives: on/true, off/false or auto
color = auto

4.9 HTTP-Proxy
You should set up a local HTTP caching proxy to save the bandwidth for the Debian package repository
access. There are several choices:

• Specialized HTTP caching proxy using the apt-cacher-ng package.

• Generic HTTP caching proxy (squid package) configured by squid-deb-proxy package

In order to use this HTTP proxy without manual configuration adjustment, it’s a good idea to install
either auto-apt-proxy or squid-deb-proxy-client package to everywhere.

4.10 Privates Debian-Depot
Sie können ein privates Debian-Depot mit dem Paket reprepro einrichten.

4.11 Virtuelle Maschinen
For testing GUI application, it is a good idea to have virtual machines. Install virt-manager and qemu-
kvm packages.

Use of chroot and virtual machines allows us not to update the whole host PC to the latest unstable
suite.

4.12 Local network with virtual machines
In order to access virtual machines easily over the local network, setting up multicast DNS service dis-
covery infrastructure by installing avahi-utils is a good idea.

For all running virtual machines and the host PC, we can use each host name appended with .local
for SSH to access each other.

17

Kapitel 5

Simple packaging

There is an old Latin saying: „Longum iter est per praecepta, breve et efficax per exempla“ („It’s a
long way by the rules, but short and efficient with examples“).

5.1 Packaging tarball
Hier ist ein Beispiel zur Erstellung eines einfachen Debian-Pakets aus einer einfachen C-Quelle mittels
einer Makefile als Bausystem.

Let’s assume this upstream tarball to be debhello-0.0.tar.xz.
Diese Art der Quellen soll als Nichtsystemdatei wie folgt instaliert werden:
Basics for the install from the upstream tarball

[base_dir] $ tar --xz -xmf debhello-0.0.tar.xz
[base_dir] $ cd debhello-0.0
[debhello-0.0] $ make
[debhello-0.0] $ make install

Debian packaging requires changing this „make install“ process to install files to the target system
image location instead of the normal location under /usr/local.

Anmerkung

Beispiele zur Erstellung von Debian-Paketen aus anderen, komplizierteren Bau-
systemen werden in „Kapitel 14“ beschrieben.

5.2 Gesamtbild
The big picture for building a single non-native Debian package from the upstream tarball debhello-
0.0.tar.xz can be summarized as:

• The maintainer obtains the upstream tarball debhello-0.0.tar.xz and untars its contents to the
debhello-0.0 directory.

• The debmake command debianizes the upstream source tree by adding template files only in the
debian directory.

– The debhello_0.0.orig.tar.xz symlink is created pointing to the debhello-0.0.tar.xz file.
– The maintainer customizes template files.

• The debuild command builds the binary package from the debianized source tree.

– debhello-0.0-1.debian.tar.xz is created containing the debian directory.

18

KAPITEL 5. SIMPLE PACKAGING 5.2. GESAMTBILD

Big picture of package building

[base_dir] $ tar --xz -xmf debhello-0.0.tar.xz
[base_dir] $ cd debhello-0.0
[debhello-0.0] $ debmake
[base_dir] $ cd debhello-0.0
[debhello-0.0] $ debmake -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-0.0] $ cd ..
I: Non-native Debian package pkg="debhello", ver="0.0", rev="1" method="dir_d...
I: already in the package-version form: "debhello-0.0"
I: [base_dir] $ ln -sf debhello-0.0.tar.xz debhello_0.0.orig.tar.xz
I: [base_dir] $ cd debhello-0.0
I: parsing option -b ""
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: build_type = make
I: ext_type = c 1 files
I: ext_type = md 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-0.0] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
I: creating debian/README.Debian from extra1_README.Debian
I: creating debian/README.source from extra1_README.source
I: creating debian/clean from extra1_clean
I: creating debian/dirs from extra1_dirs
I: creating debian/docs from extra1_docs
I: creating debian/examples from extra1_examples
I: creating debian/gbp.conf from extra1_gbp.conf
I: creating debian/links from extra1_links
I: creating debian/manpages from extra1_manpages
I: creating debian/salsa-ci.yml from extra1_salsa-ci.yml
I: creating debian/watch from extra1nn_watch
I: creating debian/tests/control from extra1tests_control
I: creating debian/upstream/metadata from extra1upstream_metadata
I: creating debian/patches/series from extra1patches_series
I: creating debian/install from extra1bin_install
I: [debhello-0.0] $ wrap-and-sort -ast
I: debian/* may have a blank line at the top.

...
[base_dir] $ cd debhello-0.0
[debhello-0.0] $... manual customization
[debhello-0.0] $ debuild

...

Tipp

The debuild command in this and following examples may be substituted by
equivalent commands such as the sbuild command.

19

KAPITEL 5. SIMPLE PACKAGING 5.3. WAS IST DEBMAKE?

Tipp

If the upstream tarball in the .tar.xz format is available, use it instead of the one
in the .tar.xz and .tar.bz2 formats. The xz compression format offers the better
compression than the gzip and bzip2 compressions.

5.3 Was ist Debmake?

Anmerkung

Actual packaging activities are often performed manually without using debmake
while referencing only existing similar packages and „Debian Policy Manual“.

The debmake command is the helper script for the Debian packaging. („Kapitel 15“)

• It creates good template files for the Debian packages.

• It always sets most of the obvious option states and values to reasonable defaults.

• Es erstellt den Tarball der Originalautoren und die benötigten Symlinks, falls sie fehlen.

• Es setzt die bestehenden Konfigurationsdateien im Verzeichnis debian/ nicht außer Kraft.

• Es unterstützt die Multiarch-Pakete.

• It provides short extracted license texts as debian/copyright using licensecheck to help license
review.

Diese Funktionalitäten ermöglichen ein einfaches und moderens Paketieren für Debian mit debmake.
In retrospective, I created debmake to simplify this documentation. I consider debmake to be more-

or-less a demonstration session generator for tutorial purpose.
The debmake command isn’t the only helper script to make a Debian package. If you are interested

alternative packaging helper tools, please see:

• Debian wiki: „AutomaticPackagingTools“ — Extensive comparison of packaging helper scripts

• Debian wiki: „CopyrightReviewTools“ — Extensive comparison of copyright review helper scripts

5.4 Was ist Debuild?
Hier ist eine Zusammenfassung von Befehlen, die dem Befehl debuild ähnlich sind.

• Die Datei debian/rules definiert, wie das binäre Debian-Paket gebaut wird.

• Der Befehl dpkg-buildpackage ist der offizielle Befehl, ein Debian-Binärpaket zu bauen. Bei einem
normalen Binärbau führt er grob die folgenden Schritte aus:

– „dpkg-source --before-build“ (apply Debian patches, unless they are already applied)
– „fakeroot debian/rules clean“
– „dpkg-source --build“ (build the Debian source package)
– „fakeroot debian/rules build“
– „fakeroot debian/rules binary“
– „dpkg-genbuildinfo“ (generate a *.buildinfo file)

20

https://www.debian.org/doc/debian-policy/
https://wiki.debian.org/AutomaticPackagingTools
https://wiki.debian.org/CopyrightReviewTools

KAPITEL 5. SIMPLE PACKAGING 5.5. SCHRITT 1: HOLEN DER QUELLEN DER …

– „dpkg-genchanges“ (generate a *.changes file)
– „fakeroot debian/rules clean“
– „dpkg-source --after-build“ (unapply Debian patches, if they are applied during --before-

build)
– „debsign“ (sign the *.dsc and *.changes files)

* If you followed „Abschnitt 4.5“ to set the -us and -uc options, this step is skipped and you
must run the debsign command manually.

• The debuild command is a wrapper script of the dpkg-buildpackage command to build the Debian
binary package under the proper environment variables.

• The sbuild command is a wrapper script to build the Debian binary package under the proper
chroot environment with the proper environment variables.

Anmerkung

Siehe dpkg-buildpackage(1) für die Details.

5.5 Schritt 1: Holen der Quellen der Originalautoren
Let’s get the upstream source.

Download debhello-0.0.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-0.0.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-0.0.tar.xz
[base_dir] $ tree
.
+-- debhello-0.0
| +-- Makefile
| +-- README.md
| +-- src
| +-- hello.c
+-- debhello-0.0.tar.xz

3 directories, 4 files

Here, the C source hello.c is a very simple one.
hello.c

[base_dir] $ cat debhello-0.0/src/hello.c
#include <stdio.h>
int
main()
{

printf("Hello, world!\n");
return 0;

}

Here, the Makefile supports „GNU Coding Standards“ and „FHS“. Notably:

• build binaries honoring $(CPPFLAGS), $(CFLAGS), $(LDFLAGS), etc.

• install files with $(DESTDIR) defined to the target system image

• install files with $(prefix) defined, which can be overridden to be /usr

21

https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

KAPITEL 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

Makefile

[base_dir] $ cat debhello-0.0/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
@echo "CFLAGS=$(CFLAGS)" | \

fold -s -w 70 | \
sed -e 's/^/# /'

$(CC) $(CPPFLAGS) $(CFLAGS) $(LDCFLAGS) -o $@ $^

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello

.PHONY: all install clean distclean uninstall

Anmerkung

The echo of the $(CFLAGS) variable is used to verify the proper setting of the
build flag in the following example.

5.6 Step 2: Generate template files with debmake
Die Ausagabe des Befehls debmake ist sehr ausführlich und erklärt seine Tätigkeiten wie folgt:

The output from the debmake command

[base_dir] $ cd debhello-0.0
[debhello-0.0] $ debmake -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-0.0] $ cd ..
I: Non-native Debian package pkg="debhello", ver="0.0", rev="1" method="dir_d...
I: already in the package-version form: "debhello-0.0"
I: [base_dir] $ ln -sf debhello-0.0.tar.xz debhello_0.0.orig.tar.xz
I: [base_dir] $ cd debhello-0.0
I: parsing option -b ""
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: build_type = make
I: ext_type = c 1 files
I: ext_type = md 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-0.0] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules

22

KAPITEL 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

I: creating debian/source/format from extra0source_format
I: creating debian/README.Debian from extra1_README.Debian
I: creating debian/README.source from extra1_README.source
I: creating debian/clean from extra1_clean
I: creating debian/dirs from extra1_dirs
I: creating debian/docs from extra1_docs
I: creating debian/examples from extra1_examples
I: creating debian/gbp.conf from extra1_gbp.conf
I: creating debian/links from extra1_links
I: creating debian/manpages from extra1_manpages
I: creating debian/salsa-ci.yml from extra1_salsa-ci.yml
I: creating debian/watch from extra1nn_watch
I: creating debian/tests/control from extra1tests_control
I: creating debian/upstream/metadata from extra1upstream_metadata
I: creating debian/patches/series from extra1patches_series
I: creating debian/install from extra1bin_install
I: [debhello-0.0] $ wrap-and-sort -ast
I: debian/* may have a blank line at the top.

The debmake command generates all these template files based on command line options. Since
no options are specified, the debmake command chooses reasonable default values for you:

• Der Quellpaketname: debhello

• Die Version der Originalautoren: 0.0

• Deb Binärpaketname: debhello

• Die Debian-Revision: 1

• The package type: bin (the ELF binary executable package)

• The -x option: -x1 (without maintainer script supports for simplicity)

Anmerkung

Here, the debmake command is invoked with the -x1 option to keep this tutorial
simple. Use of default -x2 or more extensive -x3 option is highly recommended.

Lassen Sie uns die erstellten Vorlagendateien anschauen.
Der Quellbaum, nach der grundlegenden Ausführung von debmake.

[debhello-0.0] $ cd ..
[base_dir] $ tree
.
+-- debhello-0.0
| +-- Makefile
| +-- README.md
| +-- debian
| | +-- README.Debian
| | +-- README.source
| | +-- changelog
| | +-- clean
| | +-- control
| | +-- copyright
| | +-- dirs
| | +-- docs
| | +-- examples
| | +-- gbp.conf
| | +-- install
| | +-- links

23

KAPITEL 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

| | +-- manpages
| | +-- patches
| | | +-- series
| | +-- rules
| | +-- salsa-ci.yml
| | +-- source
| | | +-- format
| | +-- tests
| | | +-- control
| | +-- upstream
| | | +-- metadata
| | +-- watch
| +-- src
| +-- hello.c
+-- debhello-0.0.tar.xz
+-- debhello_0.0.orig.tar.xz -> debhello-0.0.tar.xz

8 directories, 25 files

The debian/rules file is the build script provided by the package maintainer. Here is its template file
generated by the debmake command.

debian/rules (Vorlagendatei):

[base_dir] $ cd debhello-0.0
[debhello-0.0] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
Package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
Package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1
#
With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#

24

KAPITEL 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@

debmake generated override targets
Use "make prefix=/usr" (override prefix=/usr/local in Makefile)
#override_dh_auto_install:
dh_auto_install -- prefix=/usr

Do not install python .pyc .pyo if they exist
#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

Multiarch package requires library files to be installed to
/usr/lib/<triplet>/ . If the build system does not support
$(DEB_HOST_MULTIARCH), you may need to override some targets such as
dh_auto_configure or dh_auto_install to use $(DEB_HOST_MULTIARCH) .

This is essentially the standard debian/rules file with the dh command. (There are some commented
out contents for you to customize it.)

The debian/control file provides the main meta data for the Debian package. Here is its template file
generated by the debmake command.

debian/control (Vorlagendatei):

[debhello-0.0] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello
Section: unknown
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.
.
===== This comes from the unmodified template file =====
.
Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch05.en.html#control
.
The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''—b'' "a", "an", or "the".

25

KAPITEL 5. SIMPLE PACKAGING 5.7. SCHRITT 3: ANPASSUNG DER …

.
The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.
.
Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Warnung

If you leave „Section: unknown“ in the template debian/control file unchanged,
the lintian error may cause the build to fail.

Since this is the ELF binary executable package, the debmake command sets „Architecture: any“
and „Multi-Arch: foreign“. Also, it sets required substvar parameters as „Depends: ${shlibs:Depends},
${misc:Depends}“. These are explained in „Kapitel 6“.

Anmerkung

Please note this debian/control file uses the RFC-822 style as documented in
„5.2 Source package control files — debian/control“ of the „Debian Policy Manu-
al“. The use of the empty line and the leading space are significant.

The debian/copyright file provides the copyright summary data of the Debian package using the
licensecheck command.

debian/copyright (Vorlagendatei):

[debhello-0.0] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: FIXME
Upstream-Contact: FIXME
Source: FIXME
Disclaimer: Autogenerated by licensecheck

Files: ./Makefile
./README.md
./src/hello.c
Copyright: NONE
License: UNKNOWN
FIXME

5.7 Schritt 3: Anpassung der Vorlagendateien
Um ein geeignetes Debian-Paket zu erstellen, sind manuelle Anpassungen durch den Betreuer notwen-
dig.

In order to install files as a part of the system files, the $(prefix) value of /usr/local in the Makefile
should be overridden to be /usr. This can be accommodated by the following the debian/rules file with
the override_dh_auto_install target setting „prefix=/usr“.

debian/rules (Betreuerversion):

[base_dir] $ cd debhello-0.0
[debhello-0.0] $ vim debian/rules

26

https://www.debian.org/doc/debian-policy/ch-controlfields.html#source-package-control-files-debian-control

KAPITEL 5. SIMPLE PACKAGING 5.7. SCHRITT 3: ANPASSUNG DER …

... hack, hack, hack, ...
[debhello-0.0] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_install:
dh_auto_install -- prefix=/usr

Exportieren der Umgebungsvariable DH_VERBOSE in der Datei debian/rules zwingt das Werkzeug
debhelper dazu, einen feingranularen Baubericht zu erstellen.

Exporting DEB_BUILD_MAINT_OPTION as above sets the hardening options as described in the
„FEATURE AREAS/ENVIRONMENT“ in dpkg-buildflags(1). 1

Durch Exportieren von DEB_CFLAGS_MAINT_APPEND wie oben wird der C-Compiler gezwungen,
alle Warnungen auszugeben.

Durch Exportieren von DEB_LDFLAGS_MAINT_APPEND wie oben wird der Linker gezwungen, nur
zu linken, wenn die Bibliothek tatsächlich benötigt wird. 2

The dh_auto_install command for the Makefile based build system essentially runs „$(MAKE) in-
stall DESTDIR=debian/debhello“. The creation of this override_dh_auto_install target changes its
behavior to „$(MAKE) install DESTDIR=debian/debhello prefix=/usr“.

Hier sind die Betreuerversionen der Dateien debian/control und debian/copyright.
debian/control (Betreuerversion):

[debhello-0.0] $ vim debian/control
... hack, hack, hack, ...
[debhello-0.0] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

debian/copyright (Betreuerversion):

[debhello-0.0] $ vim debian/copyright
... hack, hack, hack, ...
[debhello-0.0] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>

1This is a cliché to force a read-only relocation link for the hardening and to prevent the lintian warning „W: debhello:
hardening-no-relro usr/bin/hello“. This is not really needed for this example but should be harmless. The lintian tool seems
to produce a false positive warning for this case which has no linked library.

2This is a cliché to prevent overlinking for the complex library dependency case such as Gnome programs. This is not really
needed for this simple example but should be harmless.

27

KAPITEL 5. SIMPLE PACKAGING 5.7. SCHRITT 3: ANPASSUNG DER …

Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Let’s remove unused template files and edit remaining template files:

• debian/README.source

• debian/patches/series (No upstream patch)

• clean

• dirs

• install

• links

Vorlagendateien unter debian/. (v=0.0):

[debhello-0.0] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-0.0] $ rm -f debian/README.source debian/source/*.ex
[debhello-0.0] $ rm -rf debian/patches
[debhello-0.0] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 14 files

28

KAPITEL 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH …

Tipp

Konfigurationsdateien, die vom Befehl dh_* aus dem Paket debhelper verwandt
werden, behandeln normalerweise # als Beginn einer Kommentarzeile.

5.8 Step 4: Building package with debuild
You can create a non-native Debian package using the debuild command or its equivalents (see „Ab-
schnitt 5.4“) in this source tree. The command output is very verbose and explains what it does as follows.

Building package with debuild
[base_dir] $ cd debhello-0.0
[debhello-0.0] $ debuild
dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.0-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .
dpkg-buildpackage: info: host architecture amd64
debian/rules clean
dh clean

dh_auto_clean
make -j12 distclean

...
debian/rules binary
dh binary

dh_update_autotools_config
dh_autoreconf
dh_auto_configure
dh_auto_build

make -j12 INSTALL="install --strip-program=true"
make[1]: Entering directory '/path/to/base_dir/debhello-0.0'
CFLAGS=-g -O2 -Werror=implicit-function-declaration
...
Finished running lintian.

Sie können überprüfen, dass CFLAGS korrekt mit -Wall und -pedantic durch die Variable DEB_CFLAGS_MAINT_APPEND
aktualisiert ist.

Wie vom Paket lintian berichtet sollte eine Handbuchseite zum Paket hinzugefügt werden, wie dies
in späteren Beispielen gezeigt wird (siehe „Kapitel 14“). Lassen Sie uns jetzt weitermachen.

Lassen Sie uns die Ergebnisse anschauen.
Die durch den Befehldebuild erstellten Dateien von debhello Version 0.0:

[debhello-0.0] $ cd ..
[base_dir] $ tree -FL 1
./
+-- debhello-0.0/
+-- debhello-0.0.tar.xz
+-- debhello-dbgsym_0.0-1_amd64.deb
+-- debhello_0.0-1.debian.tar.xz
+-- debhello_0.0-1.dsc
+-- debhello_0.0-1_amd64.build
+-- debhello_0.0-1_amd64.buildinfo
+-- debhello_0.0-1_amd64.changes
+-- debhello_0.0-1_amd64.deb
+-- debhello_0.0.orig.tar.xz -> debhello-0.0.tar.xz

29

KAPITEL 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH …

2 directories, 9 files

You see all the generated files.

• The debhello_0.0.orig.tar.xz is a symlink to the upstream tarball.

• The debhello_0.0-1.debian.tar.xz contains the maintainer generated contents.

• The debhello_0.0-1.dsc is the meta data file for the Debian source package.

• The debhello_0.0-1_amd64.deb is the Debian binary package.

• The debhello-dbgsym_0.0-1_amd64.deb is the Debian debug symbol binary package. See „Ab-
schnitt 10.21“.

• The debhello_0.0-1_amd64.build file is the build log file.

• The debhello_0.0-1_amd64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).

• The debhello_0.0-1_amd64.changes is the meta data file for the Debian binary package.

The debhello_0.0-1.debian.tar.xz contains the Debian changes to the upstream source as follows.
The compressed archive contents of debhello_0.0-1.debian.tar.xz:

[base_dir] $ tar --xz -tf debhello-0.0.tar.xz
debhello-0.0/
debhello-0.0/src/
debhello-0.0/src/hello.c
debhello-0.0/Makefile
debhello-0.0/README.md
[base_dir] $ tar --xz -tf debhello_0.0-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/docs
debian/examples
debian/gbp.conf
debian/manpages
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

The debhello_0.0-1_amd64.deb contains the binary files to be installed to the target system.
The debhello-dbgsym_0.0-1_amd64.deb contains the debug symbol files to be installed to the tar-

get system.
The binary package contents of all binary packages:

[base_dir] $ dpkg -c debhello-dbgsym_0.0-1_amd64.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/lib/
drwxr-xr-x root/root/usr/lib/debug/
drwxr-xr-x root/root/usr/lib/debug/.build-id/
drwxr-xr-x root/root/usr/lib/debug/.build-id/00/
-rw-r--r-- root/root/usr/lib/debug/.build-id/00/d21e230186d135c41c9540...
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/doc/
lrwxrwxrwx root/root/usr/share/doc/debhello-dbgsym -> debhello

30

KAPITEL 5. SIMPLE PACKAGING 5.9. STEP 3 (ALTERNATIVES): …

[base_dir] $ dpkg -c debhello_0.0-1_amd64.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/bin/
-rwxr-xr-x root/root/usr/bin/hello
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/doc/
drwxr-xr-x root/root/usr/share/doc/debhello/
-rw-r--r-- root/root/usr/share/doc/debhello/README.Debian
-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright

The generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=0.0):

[debhello-0.0] $ dpkg -f debhello-dbgsym_0.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 0.0-1)
[debhello-0.0] $ dpkg -f debhello_0.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.34)

Achtung

Many more details need to be addressed before uploading the package to the
Debian archive.

Anmerkung

If manual adjustments of auto-generated configuration files by the debmake com-
mand are skipped, the generated binary package may lack meaningful package
description and some of the policy requirements may be missed. This sloppy
package functions well under the dpkg command, and may be good enough for
your local deployment.

5.9 Step 3 (alternatives): Modification to the upstream source
The above example did not touch the upstream source to make the proper Debian package. An alterna-
tive approach as the maintainer is to modify files in the upstream source. For example, Makefile may be
modified to set the $(prefix) value to /usr.

Anmerkung

The above „Abschnitt 5.7“ using the debian/rules file is the better approach for
packaging for this example. But let’s continue on with this alternative approaches
as a leaning experience.

In the following, let’s consider 3 simple variants of this alternative approach to generate debian/patches/*
files representing modifications to the upstream source in the Debian source format „3.0 (quilt)“. These
substitute „Abschnitt 5.7“ in the above step-by-step example:

• „Abschnitt 5.10“

31

KAPITEL 5. SIMPLE PACKAGING 5.10. PATCH BY „DIFF -U“ APPROACH

• „Abschnitt 5.11“

• „Abschnitt 5.12“

Please note the debian/rules file used for these examples doesn’t have the override_dh_auto_install
target as follows:

debian/rules (alternative maintainer version):
[base_dir] $ cd debhello-0.0
[debhello-0.0] $ vim debian/rules
... hack, hack, hack, ...
[debhello-0.0] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

5.10 Patch by „diff -u“ approach
Here, the patch file 000-prefix-usr.patch is created using the diff command.

Patch by diff -u
[base_dir] $ cp -a debhello-0.0 debhello-0.0.orig
[debhello-0.0] $ vim debhello-0.0/Makefile
... hack, hack, hack, ...
[base_dir] $ diff -Nru debhello-0.0.orig debhello-0.0 >000-prefix-usr.patch
[base_dir] $ cat 000-prefix-usr.patch
diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile
--- debhello-0.0.orig/Makefile 2026-01-30 14:31:05.338972920 +0000
+++ debhello-0.0/Makefile 2026-01-30 14:31:05.420927855 +0000
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

[base_dir] $ rm -rf debhello-0.0
[base_dir] $ mv -f debhello-0.0.orig debhello-0.0

Please note that the upstream source tree is restored to the original state after generating a patch
file 000-prefix-usr.patch.

This 000-prefix-usr.patch is edited to be DEP-3 conforming and moved to the right location as below.
000-prefix-usr.patch (DEP-3):

[debhello-0.0] $ echo '000-prefix-usr.patch' >debian/patches/series
[debhello-0.0] $ vim ../000-prefix-usr.patch
... hack, hack, hack, ...
[debhello-0.0] $ mv -f ../000-prefix-usr.patch debian/patches/000-prefix-usr....
[debhello-0.0] $ cat debian/patches/000-prefix-usr.patch
From: Osamu Aoki <osamu@debian.org>
Description: set prefix=/usr patch
diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile
--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

32

https://dep-team.pages.debian.net/deps/dep3/

KAPITEL 5. SIMPLE PACKAGING 5.11. PATCH BY DQUILT APPROACH

Anmerkung

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of „Abschnitt 5.8“, the dpkg-source com-
mand assumes that no patch was applied to the upstream source, since the
.pc/applied-patches is missing.

5.11 Patch by dquilt approach
Here, the patch file 000-prefix-usr.patch is created using the dquilt command.

dquilt is a simple wrapper of the quilt program. The syntax and function of the dquilt command is
the same as the quilt(1) command, except for the fact that the generated patch is stored in the debi-
an/patches/ directory.

Patch by dquilt

[debhello-0.0] $ dquilt new 000-prefix-usr.patch
Patch debian/patches/000-prefix-usr.patch is now on top
[debhello-0.0] $ dquilt add Makefile
File Makefile added to patch debian/patches/000-prefix-usr.patch
... hack, hack, hack, ...
[debhello-0.0] $ head -1 Makefile
prefix = /usr
[debhello-0.0] $ dquilt refresh
Refreshed patch debian/patches/000-prefix-usr.patch
[debhello-0.0] $ dquilt header -e --dep3
... edit the DEP-3 patch header with editor
[debhello-0.0] $ tree -a
.
+-- .pc
| +-- .quilt_patches
| +-- .quilt_series
| +-- .version
| +-- 000-prefix-usr.patch
| | +-- .timestamp
| | +-- Makefile
| +-- applied-patches
+-- Makefile
+-- README.md
+-- debian
| +-- README.Debian
| +-- README.source
| +-- changelog
| +-- clean
| +-- control
| +-- copyright
| +-- dirs
| +-- docs
| +-- examples
| +-- gbp.conf
| +-- install
| +-- links
| +-- manpages
| +-- patches
| | +-- 000-prefix-usr.patch
| | +-- series
| +-- rules
| +-- salsa-ci.yml
| +-- source

33

KAPITEL 5. SIMPLE PACKAGING 5.12. PATCH BY „DPKG-SOURCE …

| | +-- format
| +-- tests
| | +-- control
| +-- upstream
| | +-- metadata
| +-- watch
+-- src

+-- hello.c

9 directories, 30 files
[debhello-0.0] $ cat debian/patches/series
000-prefix-usr.patch
[debhello-0.0] $ cat debian/patches/000-prefix-usr.patch
Description: set prefix=/usr patch
Author: Osamu Aoki <osamu@debian.org>
Index: debhello-0.0/Makefile
===
--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

Here, Makefile in the upstream source tree doesn’t need to be restored to the original state for the
packaging.

Anmerkung

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of „Abschnitt 5.8“, the dpkg-source com-
mand assumes that patches were applied to the upstream source, since the
.pc/applied-patches exists.

The upstream source tree can be restored to the original state for the packaging.
The upstream source tree (restored):

[debhello-0.0] $ dquilt pop -a
Removing patch debian/patches/000-prefix-usr.patch
Restoring Makefile

No patches applied
[debhello-0.0] $ head -1 Makefile
prefix = /usr/local
[debhello-0.0] $ tree -a .pc
.pc
+-- .quilt_patches
+-- .quilt_series
+-- .version

1 directory, 3 files

Here, Makefile is restored and the .pc/applied-patches is missing.

5.12 Patch by „dpkg-source --auto-commit“ approach
Here, the patch file isn’t created in this step but the source files are setup to create debian/patches/*
files in the following step of „Abschnitt 5.8“.

Bearbeiten Sie die Quellen der Originalautoren.
Modified Makefile

34

KAPITEL 5. SIMPLE PACKAGING 5.12. PATCH BY „DPKG-SOURCE …

[debhello-0.0] $ vim Makefile
... hack, hack, hack, ...
[debhello-0.0] $ head -n1 Makefile
prefix = /usr

Let’s edit debian/source/local-options:
debian/source/local-options for auto-commit

[debhello-0.0] $ mv debian/source/local-options.ex debian/source/local-option...
[debhello-0.0] $ vim debian/source/local-options
... hack, hack, hack, ...
[debhello-0.0] $ cat debian/source/local-options
== Patch applied strategy (merge) ==
#
The source outside of debian/ directory is modified by maintainer and
different from the upstream one:
* Workflow using dpkg-source commit (commit all to VCS after dpkg-source ...
https://www.debian.org/doc/manuals/debmake-doc/ch04.en.html#dpkg-sour...
* Workflow described in dgit-maint-merge(7)
#
single-debian-patch
auto-commit

Let’s edit debian/source/local-patch-header:
debian/source/local-patch-header for auto-commit

[debhello-0.0] $ mv debian/source/local-patch-header.ex debian/source/local-p...
[debhello-0.0] $ vim debian/source/local-patch-header
... hack, hack, hack, ...
[debhello-0.0] $ cat debian/source/local-patch-header
Description: debian-changes
Author: Osamu Aoki <osamu@debian.org>

Let’s remove debian/patches/* files and other unused template files.
Remove unused template files

[debhello-0.0] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-0.0] $ rm -f debian/README.source debian/source/*.ex
[debhello-0.0] $ rm -rf debian/patches
[debhello-0.0] $ tree debian
debian
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- manpages
+-- rules
+-- salsa-ci.yml
+-- source
| +-- format
| +-- local-options
| +-- local-patch-header
+-- tests
| +-- control
+-- upstream
| +-- metadata
+-- watch

4 directories, 16 files

35

KAPITEL 5. SIMPLE PACKAGING 5.12. PATCH BY „DPKG-SOURCE …

There are no debian/patches/* files at the end of this step.

Anmerkung

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of „Abschnitt 5.8“, the dpkg-source com-
mand uses options specified in debian/source/local-options to auto-commit
modification applied to the upstream source as patches/debian-changes.

Let’s inspect the Debian source package generated after the following „Abschnitt 5.8“ step and ex-
tracting files from debhello-0.0.debian.tar.xz.

Inspect debhello-0.0.debian.tar.xz after debuild

[base_dir] $ tar --xz -xvf debhello_0.0-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/docs
debian/examples
debian/gbp.conf
debian/manpages
debian/patches/
debian/patches/debian-changes
debian/patches/series
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

Let’s check generated debian/patches/* files.
Inspect debian/patches/* after debuild

[base_dir] $ cat debian/patches/series
debian-changes
[base_dir] $ cat debian/patches/debian-changes
Description: debian-changes
Author: Osamu Aoki <osamu@debian.org>

--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

The Debian source package debhello-0.0.debian.tar.xz is confirmed to be generated properly with
debian/patches/* files for the Debian modification.

36

Kapitel 6

Basics for packaging

Here, a broad overview is presented without using VCS operations for the basic rules of Debian packa-
ging focusing on the non-native Debian package in the „3.0 (quilt)“ format.

Anmerkung

Zu Gunsten der Klarheit werden einige Details bewusst übergangen. Bitte lesen
Sie die Handbuchseiten von dpkg-source(1), dpkg-buildpackage(1), dpkg(1),
dpkg-deb(1), deb(5) usw.

Das Debian-Quellpaket ist eine Gruppe von Eingabedateien (d.h. nicht eine einzelne Datei), die zum
Bau des Debian-Binärpakets verwandt werden.

Das Debian-Binärpaket ist eine besondere Archivdatei, die die Gruppe der installierbaren Binärdaten
mit ihren zugehörigen Informationen enthält.

Ein einzelnes Debian-Quellpaket kann mehrere Debian-Binärpakete, die in der Datei debian/control
definiert sind, installieren.

The non-native Debian package in the Debian source format „3.0 (quilt)“ is the most normal Debian
source package format.

Anmerkung

There are many wrapper scripts. Use them to streamline your workflow but make
sure to understand the basics of their internals.

6.1 Arbeitsablauf des Paketierens
The Debian packaging workflow to create a Debian binary package involves generating several speci-
fically named files (see „Abschnitt 6.3“) as defined in the „Debian Policy Manual“. This workflow can be
summarized in 10 steps with some over simplification as follows.

1. The upstream tarball is downloaded as the package-version.tar.xz file.

2. The upstream tarball is untarred to create many files under the package-version/ directory.

3. The upstream tarball is copied (or symlinked) to the particular filename packagename_version.orig.tar.xz.

• the character separating package and version is changed from - (hyphen) to _ (underscore)
• .orig is added in the file extension.

4. The Debian package specification files are added to the upstream source under the package-
version/debian/ directory.

37

KAPITEL 6. BASICS FOR PACKAGING 6.1. ARBEITSABLAUF DES PAKETIERENS

• Required specification files under the debian/ directory:

debian/rules Das ausführbare Skript zum Bau des Debian-Pakets (siehe „Abschnitt 6.5“)
debian/control The package configuration file containing the source package name, the

source build dependencies, the binary package name, the binary dependencies, etc. (see
„Abschnitt 6.6“)

debian/changelog The Debian package history file defining the upstream package version
and the Debian revision in its first line (see „Abschnitt 6.7“)

debian/copyright The copyright and license summary (see „Abschnitt 6.8“)
debian/source/format This indicates the desired format to dpkg-source(1) (see Debian wiki:

„DebSrc3.0“)
• Optional specification files under the debian/* (see „Abschnitt 6.14“):
• These files must be manually edited to their perfection according to the „Debian Policy Manual“

and „Debian Developer’s Reference“.

5. The dpkg-buildpackage command (usually from its wrapper debuild or sbuild) is invoked in the
package-version/ directory to make the Debian source and binary packages by invoking the debi-
an/rules script.

• The current directory is set as: „CURDIR=/path/to/package-version/“
• Create the Debian source package in the Debian source format „3.0 (quilt)“ using dpkg-

source(1)
– package_version.orig.tar.xz (copy or symlink of package-version.tar.xz)
– package_version-revision.debian.tar.xz (tarball of debian/ found in package-version/)
– package_version-revision.dsc

• Build the source using „debian/rules build“ into $(DESTDIR)
– „DESTDIR=debian/binarypackage/“ for single binary package 1
– „DESTDIR=debian/tmp/“ for multi binary package

• Create the Debian binary package using dpkg-deb(1), dpkg-genbuildinfo(1), and dpkg-
genchanges(1).

– binarypackage_version-revision_arch.deb
– … (There may be multiple Debian binary package files.)
– package_version-revision_arch.changes
– package_version-revision_arch.buildinfo

6. Check the quality of the Debian package with the lintian command. (recommended)

• Follow the rejection guidelines from ftp-master.
– „REJECT-FAQ“
– „NEW-Checkliste“
– „Lintian Autorejects“ („lintian tag list“)

7. Test the goodness of the generated Debian binary package manually by installing it and running
its programs.

8. After confirming the goodness, prepare files for the normal source-only upload to the Debian archi-
ve.

9. Sign the Debian package file with the debsign command using your private GPG key.

• Use „debsign package_version-revision_source.changes“ (source-only upload situation)
• Use „debsign package_version-revision_arch.changes“ (source+binary upload situation)

10. Upload the set of the Debian package files with the dput command to the Debian archive.

• Use „dput package_version-revision_source.changes“ (source-only upload)

1This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change
the default to DESTDIR=debian/tmp/ .

38

https://wiki.debian.org/Projects/DebSrc3.0
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/developers-reference/
https://ftp-master.debian.org/
https://ftp-master.debian.org/REJECT-FAQ.html
https://ftp-master.debian.org/NEW-checklist.html
https://ftp-master.debian.org/#lintianrejects
https://ftp-master.debian.org/static/lintian.tags

KAPITEL 6. BASICS FOR PACKAGING 6.2. DEBHELPER PACKAGE

• Use „dput package_version-revision_arch.changes“ (source+binary upload)

Test building and confirming of the binary package goodness as above is the moral obligation as
a diligent Debian developer but there is no physical barrier for people to skip such operations at this
moment for the source-only upload.

For the upstream tarball, the debmake command helps up to the step 4 in the above workflow. For the
upstream working tree package/ checked out, e.g., by „git clone https://github.com/upstreamname/package.git“
without any upstream tarball, the debmake command invoked in it helps up to step 4, too. The debmake
command does not overwrite any existing configuration files.

Here, please replace each part of the filename as:

• the package part with the Debian source package name

• the binarypackage part with the Debian binary package name

• the version part with the upstream version

• the revision part with the Debian revision

• the arch part with the package architecture (e.g., amd64)

The current Debian practice for uploading the normal Debian package is:

• Use the source-only upload if all generated binary packages exist in the Debian sid archive. This
is usual case.

• Use the source+binary upload if any one of generated packages is missing in the Debian sid
archive. (This involves manually handled NEW process by the archive management team.)

See also „Source-only uploads“.

Tipp

Many patch management and VCS usage strategies for the Debian packaging
are practiced. You don’t need to use all of them.

Tipp

There is very extensive documentation in „Chapter 6. Best Packaging Practices“
in the „Debian Developer’s Reference“. Please read it.

6.2 debhelper package
Although a Debian package can be made by writing a debian/rules script without using the debhelper
package, it is impractical to do so. There are too many modern „Debian Policy“ required features to be
addressed, such as application of the proper file permissions, use of the proper architecture dependent
library installation path, insertion of the installation hook scripts, generation of the debug symbol package,
generation of package dependency information, generation of the package information files, application
of the proper timestamp for reproducible build, etc.

Debhelper package provides a set of useful scripts in order to simplify Debian’s packaging workflow
and reduce the burden of package maintainers. When properly used, they will help packagers handle
and implement „Debian Policy“ required features automatically.

The modern Debian packaging workflow can be organized into a simple modular workflow by:

• using the dh command to invoke many utility scripts automatically from the debhelper package,
and

39

https://github.com/
https://wiki.debian.org/SourceOnlyUpload
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/

KAPITEL 6. BASICS FOR PACKAGING 6.3. PAKETNAME UND -VERSION

• configuring their behavior with declarative configuration files in the debian/ directory.

You should almost always use debhelper as your package’s build dependency. This document also
assumes that you are using a fairly contemporary version of debhelper to handle packaging works in
the following contents.

Anmerkung

For debhelper „compat >= 9“, the dh command exports compiler flags (CFLAGS,
CXXFLAGS, FFLAGS, CPPFLAGS and LDFLAGS) with values as returned
by dpkg-buildflags if they are not set previously. (The dh command calls
set_buildflags defined in the Debian::Debhelper::Dh_Lib module.)

Anmerkung

debhelper(1) changes its behavior with time. Please make sure to read
debhelper-compat-upgrade-checklist(7) to understand the situation.

6.3 Paketname und -version
If the upstream source comes as hello-0.9.12.tar.xz, you can take hello as the upstream source package
name and 0.9.12 as the upstream version.

There are some limitations for what characters may be used as a part of the Debian package. The
most notable limitation is the prohibition of uppercase letters in the package name. Here is a summary
as a set of regular expressions:

• Upstream package name (-p): [-+.a-z0-9]{2,}

• Binary package name (-b): [-+.a-z0-9]{2,}

• Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*

• Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in „Chapter 5 - Control files and their fields“ in the „Debian Policy Manual“.
You must adjust the package name and upstream version accordingly for the Debian packaging.
In order to manage the package name and version information effectively under popular tools such

as the aptitude command, it is a good idea to keep the length of package name to be equal or less than
30 characters; and the total length of version and revision to be equal or less than 14 characters. 2

In order to avoid name collisions, the user visible binary package name should not be chosen from
any generic words.

If upstream does not use a normal versioning scheme such as 2.30.32 but uses some kind of date
such as 11Apr29, a random codename string, or a VCS hash value as part of the version, make sure to
remove them from the upstream version. Such information can be recorded in the debian/changelog
file. If you need to invent a version string, use the YYYYMMDD format such as 20110429 as upstream
version. This ensures that the dpkg command interprets later versions correctly as upgrades. If you need
to ensure a smooth transition to a normal version scheme such as 0.1 in the future, use the 0~YYMMDD
format such as 0~110429 as upstream version, instead.

Version strings can be compared using the dpkg command as follows.

[~] $ dpkg --compare-versions ver1 op ver2

The version comparison rule can be summarized as:

2For more than 90% of packages, the package name is equal or less than 24 characters; the upstream version is equal or less
than 10 characters and the Debian revision is equal or less than 3 characters.

40

https://www.debian.org/doc/debian-policy/#document-ch-controlfields

KAPITEL 6. BASICS FOR PACKAGING 6.4. NATIVES DEBIAN-PAKET

• Strings are compared from the head to the tail.

• Letters are larger than digits.

• Numbers are compared as integers.

• Letters are compared in ASCII code order.

There are special rules for period (.), plus (+), and tilde (~) characters, as follows.

0.0 < 0.5 < 0.10 < 0.99 < 1 < 1.0~rc1 < 1.0 < 1.0+b1 < 1.0+nmu1 < 1.1 < 2.0

One tricky case occurs when the upstream releases hello-0.9.12-ReleaseCandidate-99.tar.xz as
the pre-release of hello-0.9.12.tar.xz. You can ensure the Debian package upgrade to work properly by
renaming the upstream source to hello-0.9.12~rc99.tar.xz.

6.4 Natives Debian-Paket
The non-native Debian package in the Debian source format „3.0 (quilt)“ is the most normal Debian
source package format. The debian/source/format file should have „3.0 (quilt)“ in it as described in
dpkg-source(1). The above workflow and the following packaging examples always use this format.

A native Debian package is the rare Debian binary package format. It may be used only when the
package is useful and valuable only for Debian. Thus, its use is generally discouraged.

Achtung

A native Debian package is often accidentally built when its upstream tarball is not
accessible from the dpkg-buildpackage command with its correct name packa-
ge_version.orig.tar.xz . This is a typical newbie mistake caused by making a
symlink name with „-“ instead of the correct one with „_“.

A native Debian package has no separation between the upstream code and the Debian changes
and consists only of the following:

• package_version.tar.xz (copy or symlink of package-version.tar.xz with debian/* files.)

• package_version.dsc

If you need to create a native Debian package, create it in the Debian source format „3.0 (native)“
using dpkg-source(1).

Tipp

There is no need to create the tarball in advance if the native Debian package
format is used. The debian/source/format file should have „3.0 (native)“ in it as
described in dpkg-source(1) and The debian/source/format file should have
the version without the Debian revision (1.0 instead of 1.0-1). Then, the tarball
containing is generated when „dpkg-source -b“ is invoked in the source tree.

6.5 debian/rules file
The debian/rules file is the executable script which re-targets the upstream build system to install files
in the $(DESTDIR) and creates the archive file of the generated files as the deb file. The deb file is used
for the binary distribution and installed to the system using the dpkg command.

The Debian policy compliant debian/rules file supporting all the required targets can be written as
simple as 3:

Simple debian/rules:
3The debmake command generates a bit more complicated debian/rules file. But this is the core part.

41

KAPITEL 6. BASICS FOR PACKAGING 6.6. DEBIAN/CONTROL FILE

#!/usr/bin/make -f
#export DH_VERBOSE = 1

%:
dh $@

The dh command functions as the sequencer to call all required „dh target“ commands at the right
moment. ⁴

• dh clean: bereinigt Dateien in dem Quellbaum.

• dh build : build the source tree

• dh build-arch : build the source tree for architecture dependent packages

• dh build-indep : build the source tree for architecture independent packages

• dh install : install the binary files to $(DESTDIR)

• dh install-arch : install the binary files to $(DESTDIR) for architecture dependent packages

• dh install-indep : install the binary files to $(DESTDIR) for architecture independent packages

• dh binary : generate the deb file

• dh binary-arch : generate the deb file for architecture dependent packages

• dh binary-indep : generate the deb file for architecture independent packages

Here, $(DESTDIR) path depends on the build type.

• „DESTDIR=debian/binarypackage/“ for single binary package ⁵

• „DESTDIR=debian/tmp/“ for multi binary package

See „Abschnitt 9.2“ and „Abschnitt 9.3“ for customization.

Tipp

Setting „export DH_VERBOSE = 1“ outputs every command that modifies files
on the build system. Also it enables verbose build logs for some build systems.

6.6 debian/control file
The debian/control file consists of blocks of metadata separated by blank lines. Each block of metadata
defines the following, in this order:

• Metadaten für das Debian-Quellpaket

• Metadaten für das Debian-Binärpaket

See „Chapter 5 - Control files and their fields“ of the ”Debian Policy Manual” for the definition of each
metadata field.

⁴This simplicity is available since version 7 of the debhelper package. This guide assumes the use of debhelper version 13
or newer.

⁵This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change
the default to DESTDIR=debian/tmp/ .

42

https://www.debian.org/doc/debian-policy/ch-controlfields.html

KAPITEL 6. BASICS FOR PACKAGING 6.7. DEBIAN/CHANGELOG FILE

Anmerkung

The debmake command sets the debian/control file with „Build-Depends:
debhelper-compat (= 13)“ to set the debhelper compatibility level.

Tipp

If an existing package has a debhelper compatibility level lower than 13, it’s
probably time to update its packaging.

6.7 debian/changelog file
The debian/changelog file records the Debian package history.

• Edit this file using the debchange command (alias dch).

• The first line defines the upstream package version and the Debian revision.

• Document changes in a specific, formal, and concise style.

– If Debian maintainer modification fixes reported bugs, add „Closes: #<bug_number>“ to close
those bugs.

• Even if you’re uploading your package yourself, you must document all non-trivial user-visible ch-
anges, such as:

– Security-related bug fixes.
– User interface changes.

• If you’re asking a sponsor to upload it, document changes more comprehensively, including all
packaging-related ones, to help with package review.

– The sponsor shouldn’t have to guess your reasoning behind package changes.
– Remember that the sponsor’s time is valuable.

After finishing your packaging and verifying its quality, execute the ”dch -r” command and save the
finalized debian/changelog file with the suite normally set to unstable. ⁶ If you’re packaging for back-
ports, security updates, LTS, etc., use the appropriate distribution names instead.

The debmake command creates the initial template file with the upstream package version and the
Debian revision. The distribution is set to UNRELEASED to prevent accidental uploads to the Debian
archive.

Tipp

The date string used in the debian/changelog file can be manually generated
by the „LC_ALL=C date -R“ command.

⁶If you’re using the vim editor, make sure to save this with the ”:wq” command.

43

KAPITEL 6. BASICS FOR PACKAGING 6.8. DEBIAN/COPYRIGHT FILE

Tipp

Use a debian/changelog entry with a version string like 1.0.1-1~rc1 when expe-
rimenting. Later, consolidate such changelog entries into a single entry for the
official package.

The debian/changelog file is installed in the /usr/share/doc/binarypackage directory as change-
log.Debian.gz by the dh_installchangelogs command.

Der Changelog der Originalautoren wird als changelog.gz in das Verzeichnis /usr/share/doc/Binärpaket
installiert.

The upstream changelog is automatically found by the dh_installchangelogs using the case insen-
sitive match of its file name to changelog, changes, changelog.txt, changes.txt, history, history.txt,
or changelog.md and searched in the ./ doc/ or docs/ directories.

6.8 debian/copyright file
Debian takes copyright and license matters very seriously. The ”Debian Policy Manual” requires a sum-
mary of these in the debian/copyright file of the package.

• „12.5. Copyright information“

• „2.3. Copyright considerations“

• „License information“

The debmake command creates the initial debian/copyright template file using the licensecheck(1)
command.

6.9 debian/patches/* files
As demonstrated in „Abschnitt 5.9“, the debian/patches/ directory holds

• patch-file-name.patch files providing -p1 patches and

• the series file which defines how these patches are applied.

See how these files are used in:

• „Abschnitt 13.6“ to build the Debian source package

• „Abschnitt 13.7“ to extract source files from the Debian source package

Anmerkung

Header texts of these patches should conform to „DEP-3“.

Anmerkung

If you want to use VCS tools such as git, gbp and dgit to create and manage
these patches after learning basics here, please refer to later in „Kapitel 11“.

44

https://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile
https://www.debian.org/doc/debian-policy/ch-archive.html#s-pkgcopyright
https://www.debian.org/legal/licenses/
https://dep-team.pages.debian.net/deps/dep3/

KAPITEL 6. BASICS FOR PACKAGING 6.10. DEBIAN/SOURCE/INCLUDE-BINARIES …

6.10 debian/source/include-binaries file
The „dpkg-source --commit“ command functions like dquilt but has one advantage over the dquilt
command. While the dquilt command can’t handle modified binary files, the „dpkg-source --commit“
command detects modified binary files and lists them in the debian/source/include-binaries file to in-
clude them in the Debian tarball as a part of the Debian source package.

6.11 debian/watch file

Anmerkung

This file is for use by the Debian non-native package.

The uscan(1) command downloads the latest upstream version using the debian/watch file. E.g.:
Basic debian/watch file:

version=4
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_EXT@

The uscan command may verify the authenticity of the upstream tarball with optional configuration
(see „Abschnitt 6.12“).

See uscan(1), „Abschnitt 9.4“, „Abschnitt 8.1“, and „Abschnitt 11.10“ for more.

6.12 debian/upstream/signing-key.asc file
Some packages are signed by a GPG key and their authenticity can be verified using their public GPG
key.

For example, „GNU hello“ can be downloaded via HTTP from https://ftp.gnu.org/gnu/hello/ . There
are sets of files:

• hello-version.tar.xz (upstream source)

• hello-version.tar.xz.sig (detached signature)

Let’s pick the latest version set.
Download the upstream tarball and its signature.

[base_dir] $ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.xz
...
[base_dir] $ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.xz.sig
...
[base_dir] $ gpg --verify hello-2.9.tar.xz.sig
gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 80EE4A00
gpg: Can't check signature: public key not found

If you know the public GPG key of the upstream maintainer from the mailing list, use it as the
debian/upstream/signing-key.asc file. Otherwise, use the hkp keyserver and check it via your web
of trust.

Download public GPG key for the upstream
[base_dir] $ gpg --keyserver hkp://keys.gnupg.net --recv-key 80EE4A00
gpg: requesting key 80EE4A00 from hkp server keys.gnupg.net
gpg: key 80EE4A00: public key "Reuben Thomas <rrt@sc3d.org>" imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: imported: 1
[base_dir] $ gpg --verify hello-2.9.tar.xz.sig

45

https://www.gnu.org/software/hello/
https://ftp.gnu.org/gnu/hello/
https://en.wikipedia.org/wiki/Web_of_trust
https://en.wikipedia.org/wiki/Web_of_trust

KAPITEL 6. BASICS FOR PACKAGING 6.13. DEBIAN/SALSA-CI.YML FILE

gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 80EE4A00
gpg: Good signature from "Reuben Thomas <rrt@sc3d.org>"
...

Primary key fingerprint: 9297 8852 A62F A5E2 85B2 A174 6808 9F73 80EE 4A00

Tipp

If your network environment blocks access to the HKP port 11371, use
„hkp://keyserver.ubuntu.com:80“ instead.

After confirming the key ID 80EE4A00 is a trustworthy one, download its public key into the debian/upstream/signing-
key.asc file.

Set public GPG key to debian/upstream/signing-key.asc
[base_dir] $ gpg --armor --export 80EE4A00 >debian/upstream/signing-key.asc

With the above debian/upstream/signing-key.asc file and the following debian/watch file, the uscan
command can verify the authenticity of the upstream tarball after its download. E.g.:

Improved debian/watch file with GPG support:
version=4
opts="pgpsigurlmangle=s/$/.sig/" \
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_EXT@

6.13 debian/salsa-ci.yml file
Install Salsa CI configuration file. See „Abschnitt 11.3“.

6.14 Other debian/* files
Optional configuration files may be added under the debian/ directory. Most of them are to control dh_*
commands offered by the debhelper package but there are some for dpkg-source, lintian and gbp
commands.

Tipp

Even an upstream source without its build system can be packaged just by using
these files. See „Abschnitt 14.2“ as an example.

The alphabetical list of notable optional debian/binarypackage.* configuration files listed below pro-
vides very powerful means to set the installation path of files. Please note:

• The „-x[01234]“ superscript notation that appears in the following list indicates the minimum value
for the debmake -x option that generates the associated template file. See „Abschnitt 16.5“ or
debmake(1) for details.

• For a single binary package, the „binarypackage.“ part of the filename in the list may be removed.

• For a multi binary package, a configuration file missing the „binarypackage“ part of the filename is
applied to the first binary package listed in the debian/control.

• When there are many binary packages, their configurations can be specified independently by pre-
fixing their name to their configuration filenames such as „package-1.install“, „package-2.install“,
etc.

46

https://salsa.debian.org/salsa-ci-team/pipeline

KAPITEL 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

• Some template configuration files may not be created by the debmake command. In such cases,
you need to create them with an editor.

• Some configuration template files generated by the debmake command with an extra .ex suffix
need to be activated by removing that suffix.

• The debmake -B command adds template files with an extra .ex suffix for all existing template files
without .ex and they need to be activated by removing that suffix.

• Nicht verwendete Vorlagendateien, die durch den Befehl debmake erstellt wurden, sollten entfernt
werden.

• Kopieren Sie die Konfigurationsvorlagendateien wie benötigt nach den Dateinamen, die ihren Pro-
grammpaketnamen entsprechen.

binarypackage.bug-control -x2 installed as usr/share/bug/binarypackage/control in binarypacka-
ge. See „Abschnitt 9.11“.

binarypackage.bug-presubj -x2 installed as usr/share/bug/binarypackage/presubj in binarypacka-
ge. See „Abschnitt 9.11“.

binarypackage.bug-script -x2 installed as usr/share/bug/binarypackage or usr/share/bug/binarypackage/script
in binarypackage. See „Abschnitt 9.11“.

Binärpaket.bash-completion List bash completion scripts to be installed.
The bash-completion package is required for both build and user environments.
Siehe dh_bash-completion(1).

clean -x1 List files that should be removed but are not cleaned by the dh_auto_clean command.
Siehe dh_auto_clean(1) und dh_clean(1).

compat -x4 Set the debhelper compatibility level. (deprecated)
Use „Build-Depends: debhelper-compat (= 13)“ in debian/control to specify the compati-
bility level and remove debian/compat.
See „COMPATIBILITY LEVELS“ in debhelper(7).

binarypackage.conffiles -x3 This optional file is installed into the DEBIAN directory within the
binary package while supplementing it with all the conffiles auto-detected by debhelper.
This file is primarily useful for using ”special” entries such as the remove-on-upgrade feature
from dpkg(1).
If the program you’re packaging requires every user to modify the configuration files in the
/etc directory, there are two popular ways to arrange for them not to be conffiles, keeping the
dpkg command happy and quiet.

– Create a symlink under the /etc directory pointing to a file under the /var directory gene-
rated by the maintainer scripts.

– Create a file generated by the maintainer scripts under the /etc directory.
Siehe dh_installdeb(1).

binarypackage.config This is the debconf config script used for asking any questions neces-
sary to configure the package. See „Abschnitt 10.22“.

Binärpaket.cron.hourly -x3 Installed into the etc/cron/hourly/binarypackage file in binarypacka-
ge.
Siehe dh_installcron(1) und cron(8).

Binärpaket.cron.daily -x3 Installed into the etc/cron/daily/binarypackage file in binarypackage.
Siehe dh_installcron(1) und cron(8).

Binärpaket.cron.weekly -x3 Installed into the etc/cron/weekly/binarypackage file in binarypacka-
ge.
Siehe dh_installcron(1) und cron(8).

Binärpaket.cron.monthly -x3 Installed into the *etc/cron/monthly/*binarypackage file in binary-
package.
Siehe dh_installcron(1) und cron(8).

47

KAPITEL 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

Binärpaket.cron.d -x3 Installed into the etc/cron.d/binarypackage file in binarypackage.
Siehe dh_installcron(1), cron(8) und crontab(5).

Binärpaket.default -x3 If this exists, it is installed into etc/default/binarypackage in binarypacka-
ge.
Siehe dh_installinit(1).

binarypackage.dirs -x1 List directories to be created in binarypackage.
Siehe dh_installdirs(1).
Usually, this is not needed since all dh_install* commands create required directories auto-
matically. Use this only when you run into trouble.

binarypackage.doc-base -x1 Installed as the doc-base control file in binarypackage.
See dh_installdocs(1) and „Debian doc-base Manual (doc-base.html)“ provided by the doc-
base package.

binarypackage.docs -x1 List documentation files to be installed in binarypackage.
Siehe dh_installdocs(1).

binarypackage.emacsen-compat Installed into usr/lib/emacsen-common/packages/compat/binarypackage
in binarypackage.
Siehe dh_installemacsen(1).

Binärpaket.emacsen-install -x3 Installed into usr/lib/emacsen-common/packages/install/binarypackage
in binarypackage.
Siehe dh_installemacsen(1).

Binärpaket.emacsen-remove -x3 Installed into usr/lib/emacsen-common/packages/remove/binarypackage
in binarypackage.
Siehe dh_installemacsen(1).

Binärpaket.emacsen-startup -x3 Installed into usr/lib/emacsen-common/packages/startup/binarypackage
in binarypackage.
Siehe dh_installemacsen(1).

binarypackage.examples -x1 List example files or directories to be installed into usr/share/doc/binarypackage/examples/
in binarypackage.
Siehe dh_installexamples(1).

gbp.conf -x1 Falls diese existiert, funktioniert sie als Konfigurationsdatei für den Befehl gbp.
Siehe gbp.conf(5), gbp(1) und git-buildpackage(1).

binarypackage.info -x1 Führt Info-Dateien auf, die in Binärpaket installiert werden.
Siehe dh_installinfo(1).

binarypackage.init -x4 Installed into etc/init.d/binarypackage in binarypackage. (deprecated)
Siehe dh_installinit(1).

binarypackage.install -x1 Liste der Dateien, die installiert werden sollten, aber nicht durch den
Befehl dh_auto_install installiert wurden.
Siehe dh_install(1) und dh_auto_install(1).

binarypackage.links -x1 List pairs of source and destination files to be symlinked. Each pair should
be put on its own line, with the source and destination separated by whitespace.
Siehe dh_link(1).

binarypackage.lintian-overrides -x2 Installed into usr/share/lintian/overrides/binarypackage in
the package build directory. This file is used to suppress erroneous lintian diagnostics.
Siehe dh_lintian(1), lintian(1) und „Lintian User’s Manual“.

binarypackage.maintscript -x2 If this optional file exists, debhelper uses this as the template to
generate DEBIAN/binarypackage.{pre,post}{inst,rm} files within the binary package while
adding „-- ”$@”“ to the dpkg-maintscript-helper(1) command.
See dh_installdeb(1) and „Chapter 6 - Package maintainer scripts and installation procedure“
in the „Debian Policy Manual“.

48

file:///usr/share/doc/doc-base/doc-base.html/index.html
https://lintian.debian.org/manual/index.html
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html

KAPITEL 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

manpage.* -x2 These are manpage template files generated by the debmake command. Please
rename these to appropriate file names and update their contents.
Debian Policy requires that each program, utility, and function should have an associated
manual page included in the same package. Manual pages are written in nroff(1). If you are
new to making a manpage, use manpage.asciidoc -x3 or manpage.1 -x3 as the starting point.

binarypackage.manpages -x1 List man pages to be installed.
Siehe dh_installman(1).

Binärpaket.menu (veraltet, nicht mehr installiert) tech-ctte #741573 decided „Debian should
use .desktop files as appropriate“.
Debian menu file installed into usr/share/menu/binarypackage in binarypackage.
See menufile(5) for its format. See dh_installmenu(1).

NEWS Installed into usr/share/doc/binarypackage/NEWS.Debian.
Siehe dh_installchangelogs(1).

patches/* Collection of -p1 patch files which are applied to the upstream source before building
the source.
No patch files are generated by the debmake command.
Siehe dpkg-source(1), „Abschnitt 4.4“ und „Abschnitt 5.9“.

patches/series -x1 The application sequence of the patches/* patch files.
binarypackage.preinst -x3, binarypackage.postinst -x3, binarypackage.prerm -x3, binarypackage.postrm -x3

If these optional files exist, the corresponding files are installed into the DEBIAN directory wi-
thin the binary package after enriched by debhelper. Otherwise, these files in the DEBIAN
directory within the binary package is generated by debhelper.
Whenever possible, simpler binarypackage.maintscript should be used instead.
See dh_installdeb(1) and „Chapter 6 - Package maintainer scripts and installation procedure“
in the „Debian Policy Manual“.
See also debconf-devel(7) and „3.9.1 Prompting in maintainer scripts“ in the „Debian Policy
Manual“.

README.Debian -x1 Installed into the first binary package listed in the debian/control file as
usr/share/doc/binarypackage/README.Debian.
This file provides the information specific to the Debian package.
Siehe dh_installdocs(1).

README.source -x1 Installed into the first binary package listed in the debian/control file as
usr/share/doc/binarypackage/README.source.
If running „dpkg-source -x“ on a source package doesn’t produce the source of the package,
ready for editing, and allow one to make changes and run dpkg-buildpackage to produce a
modified package without taking any additional steps, creating this file is recommended.
See „Debian policy manual section 4.14“.

binarypackage.service -x3 If this exists, it is installed into lib/systemd/system/binarypackage.service
in binarypackage.
Siehe dh_systemd_enable(1), dh_systemd_start(1) und dh_installinit(1).

source/format -x1 The Debian package format.
– Use „3.0 (quilt)“ to make this non-native package (popular)
– Use „3.0 (native)“ to make this native package

See „SOURCE PACKAGE FORMATS“ in dpkg-source(1).
source/lintian-overrides -x2 These file is not installed, but are scanned by the lintian command

to provide overrides for the source package.
Siehe dh_lintian(1) und lintian(1).

source/local-options -x2 The dpkg-source command uses this content as its options. This is
typically used with „Abschnitt 11.5“ and options may be:

– unapply-patches
– abort-on-upstream-changes

49

https://bugs.debian.org/741573
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts
https://www.debian.org/doc/debian-policy/ch-source.html#source-package-handling-debian-readme-source

KAPITEL 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

This is not included in the generated source package.
See „FILE FORMATS“ in dpkg-source(1).

source/local-patch-header -x2 Free form text that is put on top of the automatic patch generated.
This is not included in the generated source package and is meant to be committed to the
„Abschnitt 11.5“.
See „FILE FORMATS“ in dpkg-source(1).

source/options -x2 The dpkg-source command uses this content as its options. This is typically
used with „Abschnitt 11.6“ and options may be:

– auto-commit
– single-debian-patch

This is included in the generated source package.
See „FILE FORMATS“ in dpkg-source(1).

source/patch-header -x2 Free form text that is put on top of the automatic patch generated.
This is included in the generated source package and is meant to be committed to the ” ̀Ab-
schnitt 11.6 ̀.”.
See „FILE FORMATS“ in dpkg-source(1).

binarypackage.symbols -x1 The symbols files, if present, are passed to the dpkg-gensymbols
command to be processed and installed.
Siehe dh_makeshlibs(1) und „Abschnitt 10.16“..

binarypackage.templates This is the debconf templates file used for asking any questions ne-
cessary to configure the package. See „Abschnitt 10.22“.

tests/control -x1 This is the RFC822-style test meta data file defined in DEP-8. See autopkg-
test(1) and „Abschnitt 10.4“.

TODO Installed into the first binary package listed in the debian/control file as usr/share/doc/binarypackage/TODO.Debian.
Siehe dh_installdocs(1).

Binärpaket.tmpfile -x3 If this exists, it is installed into usr/lib/tmpfiles.d/binarypackage.conf in
binarypackage.
Siehe dh_systemd_enable(1), dh_systemd_start(1) und dh_installinit(1).

binarypackage.upstart -x4 If this exists, it is installed into etc/init/package.conf in the package
build directory. (deprecated)
Siehe dh_installinit(1).

upstream/metadata -x1 Per-package machine-readable metadata about upstream (DEP-12). See
„Upstream MEtadata GAthered with YAml (UMEGAYA)“.

50

https://dep-team.pages.debian.net/deps/dep8/
https://dep-team.pages.debian.net/deps/dep12/
https://wiki.debian.org/UpstreamMetadata

Kapitel 7

Quality of packaging

The quality of Debian packaging can be improved by using testing tools.

• lintian(1)

• piuparts(1)

If you follow „Kapitel 4“, these are automatically executed. You are expected to fix all warnings.

7.1 Reformat debian/* files with wrap-and-sort
It is good idea to reformat debian/* files consistently using the wrap-and-sort(1) command in devscripts
package.

Reformat debian/* files

[debhello-0.0] $ wrap-and-sort -vast

7.2 Validate debian/* files with debputy
The new debputy tool 1 includes subcommands to validate (and fix) most files in debian/*.

Check correctness of files in debian/*

[debhello-0.0] $ debputy lint --spellcheck

Format debian/control and debian/tests/control files

[debhello-0.0] $ debputy reformat --style black

Using the „debputy reformat“ command obsoletes using „wrap-and-sort -vast“.
The debputy tool also includes a language server. You can set up to get real-time feedback while

editing debian/* files with any modern editor supporting the Language Server Protocol.

1The main purpose of the debputy tool is to offer a new Debian package build paradigm. This new paradigm is beyond the
scope of this tutorial.

51

https://manpages.debian.org/unstable/dh-debputy/debputy.1.en.html
https://en.wikipedia.org/wiki/Language_Server_Protocol

Kapitel 8

Sanitization of the source

There are a few cases that require sanitizing the source to prevent contamination of the generated Debian
source package.

• Non-https://www.debian.org/social_contract.html#guidelines[DFSG] compliant content in the upstream
source.

– Debian takes software freedom seriously and adheres to the DFSG.

• Extraneous auto-generated content in the upstream source.

– Debian packages should rebuild these under the latest system.

• Extraneous VCS content in the upstream source.

– The -i and -I options set in „Abschnitt 4.5“ for the dpkg-source(1) command should avoid
these.

* The -i option is intended for non-native Debian packages.

* The -I option is intended for native Debian packages.

There are several methods to avoid including undesirable content.

8.1 Fix with Files-Excluded
This method is suitable for avoiding non-https://www.debian.org/social_contract.html#guidelines[DFSG]
compliant content in the upstream source tarball.

• List the files to be removed in the Files-Excluded stanza of the debian/copyright file.

• List the URL to download the upstream tarball in the debian/watch file.

• Führen Sie den Befehl uscan aus, um einen neuen Tarball der Originalautoren herunterzuladen.

– Alternatively, use the „gbp import-orig --uscan --pristine-tar“ command.

• mk-origtargz invoked from uscan removes excluded files from the upstream tarball and repack it
as a clean tarball.

• Der resultierende Tarball hat die Versionsnummer mit einer zusätzlichen Endung +dfsg.

See „COPYRIGHT FILE EXAMPLES“ in mk-origtargz(1).

52

https://www.debian.org/social_contract.html#guidelines

KAPITEL 8. SANITIZATION OF THE SOURCE 8.2. FIX WITH „DEBIAN/RULES CLEAN“

8.2 Fix with „debian/rules clean“
This method is suitable for avoiding auto-generated files by removing them in the ”debian/rules clean”
target.

Anmerkung

The ”debian/rules clean” target is called before the ”dpkg-source --build” com-
mand by the dpkg-buildpackage command. The ”dpkg-source --build” com-
mand ignores removed files.

8.3 Fix with extend-diff-ignore
This is for the non-native Debian package.

The problem of extraneous diffs can be fixed by ignoring changes made to specific parts of the source
tree. This is done by adding the ”extend-diff-ignore=… ” line in the debian/source/options file.

debian/source/options to exclude the config.sub, config.guess and Makefile files:

Don't store changes on autogenerated files
extend-diff-ignore = "(^|/)(config\.sub|config\.guess|Makefile)$"

Anmerkung

This approach always works, even when you can’t remove the file. It saves you
from having to make a backup of the unmodified file just to restore it before the
next build.

Tipp

If you use the debian/source/local-options file instead, you can hide this setting
from the generated source package. This may be useful when local non-standard
VCS files interfere with your packaging.

8.4 Fix with tar-ignore
This is for the native Debian package.

You can exclude certain files in the source tree from the generated tarball by adjusting the file glob.
Add the ”tar-ignore=… ” lines in the debian/source/options or debian/source/local-options files.

Anmerkung

For example, if the source package of a native package needs files with the
.o extension as part of the test data, the setting in „Abschnitt 4.5“ may be
too aggressive. You can work around this by dropping the -I option for DE-
BUILD_DPKG_BUILDPACKAGE_OPTS in „Abschnitt 4.5“ and adding the ”tar-
ignore=… ” lines in the debian/source/local-options file for each package.

53

KAPITEL 8. SANITIZATION OF THE SOURCE 8.5. FIX WITH „GIT CLEAN -DFX“

8.5 Fix with „git clean -dfx“
The problem of extraneous content in the second build can be avoided by restoring the source tree. This
is done by committing the source tree to the Git repository before the first build.

You can restore the source tree before the second package build. For example:

[debhello] $ git reset --hard
[debhello] $ git clean -dfx

This works because the dpkg-source command ignores the contents of typical VCS files in the source
tree, as specified by the DEBUILD_DPKG_BUILDPACKAGE_OPTS setting in „Abschnitt 4.5“.

Tipp

If the source tree is not managed by a VCS, run ”git init; git add -A .; git commit”
before the first build.

54

Kapitel 9

More on packaging

Let’s explore more fundamentals of Debian packaging.

9.1 Package customization
All customization data for the Debian source package resides in the debian/ directory as presented in
„Abschnitt 5.7“:

• The Debian package build system can be customized through the debian/rules file (see „Ab-
schnitt 9.2“).

• The Debian package installation path etc. can be customized through the addition of configuration
files such as package.install and package.docs in the debian/ directory for the dh_* commands
from the debhelper package (see „Abschnitt 6.14“).

When these are not sufficient to make a good Debian package, -p1 patches of debian/patches/*
files are deployed to modify the upstream source. These are applied in the sequence defined in the
debian/patches/series file before building the package as presented in „Abschnitt 5.9“.

You should address the root cause of the Debian packaging problem in the least invasive way possi-
ble. This approach will make the generated package more robust for future upgrades.

Anmerkung

If the patch addressing the root cause is useful to the upstream project, send it
to the upstream maintainer.

9.2 Customized debian/rules
Flexible customization of the Abschnitt 6.5 is achieved by adding appropriate override_dh_* targets and
their rules.

When a special operation is required for a certain dh_foo command invoked by the dh command,
its automatic execution can be overridden by adding the makefile target override_dh_foo in the debi-
an/rules file.

The build process may be customized via the upstream provided interface such as arguments to the
standard source build system commands, such as:

• configure,

• Makefile,

• „python -m build“, or

• Build.PL.

55

KAPITEL 9. MORE ON PACKAGING 9.3. VARIABLES FOR DEBIAN/RULES

In this case, you should add the override_dh_auto_build target with „dh_auto_build -- arguments“.
This ensures that arguments are passed to the build system after the default parameters that dh_auto_build
usually passes.

Tipp

Avoid executing bare build system commands directly if they are supported by
the dh_auto_build command.

Siehe:

• „Abschnitt 5.7“ for the basic example.

• „Abschnitt 10.3“ to be reminded of the challenge involving the underlying build system.

• „Abschnitt 10.10“ for multiarch customization.

• „Abschnitt 10.6“ for hardening customization.

9.3 Variables for debian/rules
Some variable definitions useful for customizing debian/rules can be found in files under /usr/share/dpkg/.
Notably:

pkg-info.mk Set DEB_SOURCE, DEB_VERSION, DEB_VERSION_EPOCH_UPSTREAM, DEB_VERSION_UPSTREAM_REVISION,
DEB_VERSION_UPSTREAM, and DEB_DISTRIBUTION variables obtained from dpkg-parsechangelog(1).
(useful for backport support etc..)

vendor.mk Set DEB_VENDOR and DEB_PARENT_VENDOR variables; and dpkg_vendor_derives_from
macro obtained from dpkg-vendor(1). (useful for vendor support (Debian, Ubuntu, …).)

architecture.mk Set DEB_HOST_* and DEB_BUILD_* variables obtained from dpkg-architecture(1).

buildflags.mk Set CFLAGS, CPPFLAGS, CXXFLAGS, OBJCFLAGS, OBJCXXFLAGS, GCJFLAGS,
FFLAGS, FCFLAGS, and LDFLAGS build flags obtained from dpkg-buildflags(1).

For example, you can add an extra option to CONFIGURE_FLAGS for linux-any target architectures
by adding the following to debian/rules:

DEB_HOST_ARCH_OS ?= $(shell dpkg-architecture -qDEB_HOST_ARCH_OS)
...
ifeq ($(DEB_HOST_ARCH_OS),linux)
CONFIGURE_FLAGS += --enable-wayland
endif

Siehe „Abschnitt 10.10“, dpkg-architecture(1) und dpkg-buildflags(1).

9.4 New upstream release
When a new upstream release tarball debhello-newvwesion.tar.xz is released, the Debian source packa-
ge can be updated by invoking commands in the old source tree as:

[debhello-0.0] $ uscan
... debhello-newversion.tar.xz downloaded
[debhello-0.0] $ uupdate -v newversion ../debhello-newversion.tar.xz

• The debian/watch file in the old source tree must be a valid one.

• This make symlink ../debhello_newvwesion.orig.tar.xz pointing to ../debhello-newvwesion.tar.xz.

56

KAPITEL 9. MORE ON PACKAGING 9.5. MANAGE PATCH QUEUE WITH DQUILT

• Files are extracted from ../debhello-newvwesion.tar.xz to ../debhello-newversion/

• Files are copied from ../debhello-oldversion/debian/ to ../debhello-newvesion/debian/ .

After the above, you should refresh debian/patches/* files (see „Abschnitt 9.5“) and update debi-
an/changelog with the dch(1) command.

When „debian uupdate“ is specified at the end of line in the debian/watch file, uscan automatically
executes uupdate(1) after downloading the tarball.

9.5 Manage patch queue with dquilt
You can add, drop, and refresh debian/patches/* files with dquilt to manage patch queue.

• Add a new patch debian/patches/bugname.patch recording the upstream source modification on
the file buggy_file as:

[debhello-0.0] $ dquilt push -a
[debhello-0.0] $ dquilt new bugname.patch
[debhello-0.0] $ dquilt add buggy_file
[debhello-0.0] $ vim buggy_file
...

[debhello-0.0] $ dquilt refresh
[debhello-0.0] $ dquilt header -e
[debhello-0.0] $ dquilt pop -a

• Drop (== disable) an existing patch

– Comment out pertinent line in debian/patches/series
– Erase the patch itself (optional)

• Refresh debian/patches/* files to make „dpkg-source -b“ work as expected after updating a De-
bian package to the new upstream release.

[debhello-0.0] $ uscan; uupdate # updating to the new upstream release
[debhello-0.0] $ while dquilt push; do dquilt refresh ; done
[debhello-0.0] $ dquilt pop -a

– If conflicts are encountered with „dquilt push“ in the above, resolve them and run „dquilt
refresh“ manually for each of them.

9.6 Build commands
Here is a recap of popular low level package build commands. There are many ways to do the same
thing.

• dpkg-buildpackage = core of package building tool

• debuild = dpkg-buildpackage + lintian (build under the sanitized environment variables)

• schroot = core of the Debian chroot environment tool

• sbuild = dpkg-buildpackage on custom schroot (build in the chroot)

9.7 Note on sbuild
The sbuild(1) command is a wrapper script of dpkg-buildpackage which builds Debian binary packa-
ges in a chroot environment managed by the schroot(1) command. For example, building for Debian
unstable suite can be done as:

[debhello-0.0] $ sudo sbuild -d unstable

57

KAPITEL 9. MORE ON PACKAGING 9.8. SPECIAL BUILD CASES

In schroot(1) terminology, this builds a Debian package in a clean ephemeral chroot „chroot:unstable-
amd64-sbuild“ started as a copy of the clean minimal persistent chroot „source:unstable-amd64-
sbuild“.

This build environment was set up as described in „Abschnitt 4.6“ with „sbuild-debian-developer-
setup -s unstable“ which essentially did the following:

[~] $ sudo mkdir -p /srv/chroot/dist-amd64-sbuild
[~] $ sudo sbuild-createchroot unstable /srv/chroot/unstable-amd64-sbuild http:// ←↩

deb.debian.org/debian
[~] $ sudo usermod -a -G sbuild <your_user_name>
[~] $ sudo newgrp -

The schroot(1) configuration for unstable-amd64-sbuild was generated at /etc/schroot/chroot.d/unstable-
amd64-sbuild.$suffix :

[unstable-amd64-sbuild]
description=Debian sid/amd64 autobuilder
groups=root,sbuild
root-groups=root,sbuild
profile=sbuild
type=directory
directory=/srv/chroot/unstable-amd64-sbuild
union-type=overlay

Hier:

• The profile defined in the /etc/schroot/sbuild/ directory is used to setup the chroot environment.

• /srv/chroot/unstable-amd64-sbuild directory holds the chroot filesystem.

• /etc/sbuild/unstable-amd64-sbuild is symlinked to /srv/chroot/unstable-amd64-sbuild .

You can update this source chroot „source:unstable-amd64-sbuild“ by:

[~] $ sudo sbuild-update -udcar unstable

You can log into this source chroot „source:unstable-amd64-sbuild“ by:

[~] $ sudo sbuild-shell unstable

Tipp

If your source chroot filesystem is missing packages such as libeatmydata1,
ccache, and lintian for your needs, you may want to install these by logging into
it.

9.8 Special build cases
The orig.tar.xz file may need to be uploaded for a Debian revision other than 0 or 1 under some excep-
tional cases (e.g., for a security upload).

When an essential package becomes a non-essential one (e.g., adduser), you need to remove it
manually from the existing chroot environment for its use by piuparts.

9.9 Upload orig.tar.xz
When you first upload the package to the archive, you need to include the original orig.tar.xz source,
too.

If the Debian revision number of the package is either 1 or 0, this is the default. Otherwise, you must
provide the dpkg-buildpackage option -sa to the dpkg-buildpackage command.

58

https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Chroot

KAPITEL 9. MORE ON PACKAGING 9.10. SKIPPED UPLOADS

• dpkg-buildpackage -sa

• debuild -sa

• sbuild

• For „gbp buildpackage“, edit the ~/.gbp.conf file.

Tipp

On the other hand, the -sd option will force the exclusion of the original orig.tar.xz
source.

Tipp

Security uploads require including the orig.tar.xz file.

9.10 Skipped uploads
If you created multiple entries in the debian/changelog while skipping uploads, you must create a proper
*_.changes file which includes all changes since the last upload. This can be done by specifying the
dpkg-buildpackage option -v with the last uploaded version, e.g., 1.2.

• dpkg-buildpackage -v1.2

• debuild -v1.2

• sbuild --debbuildopts -v1.2

• For gbp buildpackage, edit the ~/.gbp.conf file.

9.11 Bug reports
The reportbug(1) command used for the bug report of binarypackage can be customized by the files in
usr/share/bug/binarypackage/.

The dh_bugfiles command installs these files from the template files in the debian/ directory.

• debian/binarypackage.bug-control → usr/share/bug/binarypackage/control

– This file contains some directions such as redirecting the bug report to another package.

• debian/binarypackage.bug-presubj → usr/share/bug/binarypackage/presubj

– This file is displayed to the user by the reportbug command.

• debian/binarypackage.bug-script → usr/share/bug/binarypackage or usr/share/bug/binarypackage/script

– The reportbug command runs this script to generate a template file for the bug report.

59

KAPITEL 9. MORE ON PACKAGING 9.11. BUG REPORTS

See dh_bugfiles(1) and „reportbug’s Features for Developers (README.developers)“

Tipp

If you always remind the bug reporter of something or ask them about their situa-
tion, use these files to automate it.

60

file:///usr/share/doc/reportbug/README.developers.gz

Kapitel 10

Advanced packaging

Let’s describe advanced topics on Debian packaging.

10.1 Historical perspective
Let me oversimplify historical perspective of Debian packaging practices focused on the non-native pack-
aging.

Debian was started in 1990s when upstream packages were available from public FTP sites such
as Sunsite. In those early days, Debian packaging used Debian source format currently known as the
Debian source format „1.0“:

• The Debian source package ships a set of files for the Debian source package.

– package_version.orig.tar.xz : symlink to or copy of the upstream released file.
– package_version-revision.diff.gz : „One big patch“ for Debian modifications.
– package_version-revision.dsc : package description.

• Several workaround approaches such as dpatch, dbs, or cdbs were deployed to manage multiple
topic patches.

The modern Debian source format „3.0 (quilt)“ was invented around 2008 (see „ProjectsDebSrc3.0“):

• The Debian source package ships a set of files for the Debian source package.

– package_version.orig.tar.?z : symlink to or copy of the upstream released file.
– package_version-revision.debian.tar.?z : tarball of debian/ for Debian modifications.

* The debian/source/format file contains „3.0 (quilt)“.

* Optional multiple topic patches are stored in the debian/patches/ directory.
– package_version-revision.dsc : package description.

• The standardized approach to manage multiple topic patches using quilt(1) is deployed for the
Debian source format „3.0 (quilt)“.

Most Debian packages adopted the Debian source formats „3.0 (quilt)“ and „3.0 (native)“.
Now, the git(1) is popular with upstream and Debian developers. The git and its associated tools

are important part of the modern Debian packaging workflow. This modern workflow involving git will be
mentioned later in „Kapitel 11“.

10.2 Current trends
Current Debian packaging practices and their trends are moving target. See:

• „Debian Trends“ — Hints for „De facto standard“ of Debian practices

– Build systems: dh

61

https://www.debian.org/doc/manuals/project-history/index.en.html
https://en.wikipedia.org/wiki/Sunsite
https://wiki.debian.org/Projects/DebSrc3.0
https://trends.debian.net/

KAPITEL 10. ADVANCED PACKAGING 10.3. NOTE ON BUILD SYSTEM

– Debian source format: „3.0 (quilt)“
– VCS: git
– VCS Hosting: salsa
– Rules-Requires-Root: adopted, fakeroot
– Copyright format: DEP-5

• „debhelper-compat-upgrade-checklist(7) manpage“ — Upgrade checklist for debhelper

• „DEP - Debian Enhancement Proposals“ — Formal proposals to enhance Debian

You can also search entire Debian source code data by yourself, too.

• „Debian Sources“ — code search tool

– „Debian Code Search“ — wiki page describing its usage

• „Debian Code Search“ — another code search tool

10.3 Note on build system
Auto-generated files of the build system may be found in the released upstream tarball. These should
be regenerated when Debian package is build. E.g.:

• „dh $@ --with autoreconf“ should be used in the debian/rules if Autotools (autoconf + automake)
are used.

Some modern build system may be able to download required source codes and binary files from
arbitrary remote hosts to satisfy build requirements. Don’t use this download feature. The official Debian
package is required to be build only with packages listed in Build-Depends: of the debian/control file.

10.4 Continuous integration
The dh_auto_test(1) command is a debhelper command that tries to automatically run the test suite
provided by the upstream developer during the Debian package building process.

The autopkgtest(1) command can be used after the Debian package building process. It tests gene-
rated Debian binary packages in the virtual environment using the debian/tests/control RFC822-style
metadata file as continuous integration (CI). See:

• Documents in the /usr/share/doc/autopkgtest/ directory

• „4. autopkgtest: Automatic testing for packages“ of the „Ubuntu Packaging Guide“

There are several other CI tools on Debian for you to explore.

• The Salsa offers „Abschnitt 11.3“.

• The debci package: CI platform on top of the autopkgtest package

• The jenkins package: generic CI platform

10.5 Bootstrapping
Debian cares about supporting new ports or flavours. The new ports or flavours require bootstrap-
ping operation for the cross-build of the initial minimal native-building system. In order to avoid build-
dependency loops during bootstrapping, the build-dependency needs to be reduced using the DEB_BUILD_PROFILES
environment variable.

62

https://salsa.debian.org/
https://dep-team.pages.debian.net/deps/dep5/
https://dep-team.pages.debian.net/
https://sources.debian.org/
https://wiki.debian.org/DebianCodeSearch
https://dcs.zekjur.net/
https://en.wikipedia.org/wiki/Continuous_integration
https://packaging.ubuntu.com/html/auto-pkg-test.html
https://salsa.debian.org
https://wiki.debian.org/DebianBootstrap
https://wiki.debian.org/DebianBootstrap

KAPITEL 10. ADVANCED PACKAGING 10.6. COMPILER HARDENING

See Debian wiki: „BuildProfileSpec“.

Tipp

If a core package foo build depends on a package bar with deep build depen-
dency chains but bar is only used in the test target in foo, you can safely mark
the bar with <!nocheck> in the Build-depends of foo to avoid build loops.

10.6 Compiler hardening
The compiler hardening support spreading for Debian jessie (8.0) demands that we pay extra attention
to the packaging.

You should read the following references in detail.

• Debian wiki: „Hardening“

• Debian wiki: „Hardening Walkthrough“

The debmake command adds template comments to the debian/rules file as needed for DEB_BUILD_MAINT_OPTIONS,
DEB_CFLAGS_MAINT_APPEND, and DEB_LDFLAGS_MAINT_APPEND (see „Kapitel 5“ and dpkg-
buildflags(1)).

10.7 Reproduzierbares Bauen
Here are some recommendations to attain a reproducible build result.

• Betten Sie keine Zeitstempel, basierend auf der Systemzeit, ein.

• Don’t embed the file path of the build environment.

• Use „dh $@“ in the debian/rules to access the latest debhelper features.

• Export the build environment as „LC_ALL=C.UTF-8“ (see „Abschnitt 12.1“).

• Set the timestamp used in the upstream source from the value of the debhelper-provided environ-
ment variable $SOURCE_DATE_EPOCH.

• Lesen Sie mehr unter „Reproduzierbares Bauen“.

– „Reproduzierbares Bauen - Wie geht es“.
– „Reproduzierbares Bauen - Zeitstempelvorschlag“.

Reproducible builds are important for security and quality assurance. They allow independent verifi-
cation that no vulnerabilities or backdoors have been introduced during the build process.

Die durch dpkg-genbuildinfo(1) erstellte Steuerdatei source-name_source-version_arch.buildinfo
zeichnet die Bauumgebung auf. Siehe deb-buildinfo(5)

10.8 Substvar
The debian/control file also defines the package dependency in which the „variable substitutions me-
chanism“ (substvar) may be used to free package maintainers from chores of tracking most of the simple
package dependency cases. See deb-substvars(5).

The debmake command supports the following substvars:

• ${misc:Depends} for all binary packages

• ${misc:Pre-Depends} for all multiarch packages

63

https://wiki.debian.org/BuildProfileSpec
https://wiki.debian.org/Hardening
https://wiki.debian.org/HardeningWalkthrough
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds/Howto
https://wiki.debian.org/ReproducibleBuilds/TimestampsProposal
https://www.debian.org/doc/debian-policy/ch-source.html#s-substvars
https://www.debian.org/doc/debian-policy/ch-source.html#s-substvars

KAPITEL 10. ADVANCED PACKAGING 10.9. BIBLIOTHEKSPAKET

• ${shlibs:Depends} for all binary executable and library packages

• ${python:Depends} for all Python packages

• ${python3:Depends} for all Python3 packages

• ${perl:Depends} for all Perl packages

• ${ruby:Depends} for all Ruby packages

For the shared library, required libraries found simply by „objdump -p /path/to/program | grep NEE-
DED“ are covered by the shlib substvar.

For Python and other interpreters, required modules found simply looking for lines with „import“,
„use“, „require“, etc., are covered by the corresponding substvars.

For other programs which do not deploy their own substvars, the misc substvar covers their depen-
dency.

For POSIX shell programs, there is no easy way to identify the dependency and no substvar covers
their dependency.

For libraries and modules required via the dynamic loading mechanism including the „GObject in-
trospection“ mechanism, there is no easy way to identify the dependency and no substvar covers their
dependency.

10.9 Bibliothekspaket
Die Paketierung von Bibliothekssoftware verlangt von Ihnen deutlich mehr Arbeit als normal. Es folgen
ein paar Erinnerungen zur Paketierung von Bibliothekssoftware:

• The library binary package must be named as in „Abschnitt 10.17“.

• Debian ships shared libraries such as /usr/lib/<triplet>/libfoo-0.1.so.1.0.0 (see „Abschnitt 10.10“).

• Debian encourages using versioned symbols in the shared library (see „Abschnitt 10.16“).

• Debian doesn’t ship *.la libtool library archive files.

• Debian discourages using and shipping *.a static library files.

Before packaging shared library software, see:

• „Chapter 8 - Shared libraries“ of the „Debian Policy Manual“

• „10.2 Libraries“ of the „Debian Policy Manual“

• „6.7.2. Libraries“ of the „Debian Developer’s Reference“

For the historic background study, see:

• „Escaping the Dependency Hell“ 1

– This encourages having versioned symbols in the shared library.

• „Debian Library Packaging guide“ 2

– Please read the discussion thread following its announcement, too.
1This document was written before the introduction of the symbols file.
2The strong preference is to use the SONAME versioned -dev package names over the single -dev package name in „Chapter

6. Development (-DEV) packages“, which does not seem to be shared by the former ftp-master (Steve Langasek). This document
was written before the introduction of the multiarch system and the symbols file.

64

https://wiki.gnome.org/Projects/GObjectIntrospection
https://wiki.gnome.org/Projects/GObjectIntrospection
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html
https://www.debian.org/doc/debian-policy/ch-files.html#libraries
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-libraries
https://debconf4.debconf.org/talks/dependency-hell/img1.html
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
https://lists.debian.org/debian-devel/2004/06/msg00069.html
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg

KAPITEL 10. ADVANCED PACKAGING 10.10. MULTIARCH

10.10 Multiarch
Multiarch support for cross-architecture installation of binary packages (particularly i386 and amd64, but
also other combinations) in the dpkg and apt packages introduced in Debian wheezy (7.0, May 2013),
demands that we pay extra attention to packaging.

You should read the following references in detail.

• Ubuntu wiki (upstream)

– „MultiarchSpec“

• Debian wiki (Debian situation)

– „Debian multiarch support“
– „Multiarch/Implementation“

The multiarch is enabled by using the <triplet> value such as i386-linux-gnu and x86_64-linux-gnu
in the install path of shared libraries as /usr/lib/<triplet>/, etc..

• The <triplet> value required internally by debhelper scripts is implicitly set in themselves. The
maintainer doesn’t need to worry.

• The <triplet> value used in override_dh_* target scripts must be explicitly set in the debian/rules
file by the maintainer. The <triplet> value is stored in the $(DEB_HOST_MULTIARCH) variable in
the following debian/rules snippet example:

DEB_HOST_MULTIARCH = $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)
...
override_dh_install:
mkdir -p package1/lib/$(DEB_HOST_MULTIARCH)
cp -dR tmp/lib/. package1/lib/$(DEB_HOST_MULTIARCH)

Siehe:

• „Abschnitt 9.3“

• „Abschnitt 16.2“

• „Abschnitt 10.12“

• „dpkg-architecture(1) manpage“

10.11 Aufteilung eines Debian-Binärpakets
For well behaving build systems, the split of a Debian binary package into small ones can be realized as
follows.

• Create binary package entries for all binary packages in the debian/control file.

• List all file paths (relative to debian/tmp) in the corresponding debian/binarypackage.install files.

Bitte prüfen Sie die Beispiele in dieser Anleitung:

• „Abschnitt 14.11“ (Autotools-basiert)

• „Abschnitt 14.12“ (CMake-basiert)

An intuitive and flexible method to create the initial template debian/control file defining the split of
the Debian binary packages is accommodated with the -b option. See „Abschnitt 16.2“.

65

https://wiki.ubuntu.com/MultiarchSpec
https://wiki.debian.org/Multiarch
https://wiki.debian.org/Multiarch/Implementation

KAPITEL 10. ADVANCED PACKAGING 10.12. PAKETTRENNUNGSSZENARIEN UND …

10.12 Pakettrennungsszenarien und -beispiele
Here are some typical multiarch package split scenarios for the following upstream source examples
using the debmake command:

• a library source libfoo-1.0.tar.xz

• a tool source bar-1.0.tar.xz written in a compiled language

• a tool source baz-1.0.tar.xz written in an interpreted language

Binärpaket Typ Architecture: Multi-
Arch:

Paketinhalt

libfoo1 lib* any same die Laufzeitbibliothek, koinstallierbar
libfoo-dev dev* any same the shared library header files etc.,

co-installable
libfoo-tools bin* any foreign the run-time support programs, not

co-installable
libfoo-doc doc* all foreign the shared library documentation files
bar bin* any foreign the compiled program files, not

co-installable
bar-doc doc* all foreign the documentation files for the

program
baz script all foreign the interpreted program files

10.13 Multiarch library path
Debian policy requires to comply with the „Filesystem Hierarchy Standard (FHS), version 3.0“, with the
exceptions noted in „File System Structure“.

The most notable exception is the use of /usr/lib/<triplet>/ instead of /usr/lib<qual>/ (e.g., /lib32/
and /lib64/) to support a multiarch library.

Tabelle 10.2 The multiarch library path options
Classic path i386 multiarch path amd64 multiarch path
/lib/ /lib/i386-linux-gnu/ /lib/x86_64-linux-gnu/
/usr/lib/ /usr/lib/i386-linux-gnu/ /usr/lib/x86_64-linux-gnu/

For Autotools based packages under the debhelper package (compat>=9), this path setting is auto-
matically taken care by the dh_auto_configure command.

For other packages with non-supported build systems, you need to manually adjust the install path
as follows.

• If „./configure“ is used in the override_dh_auto_configure target in debian/rules, make su-
re to replace it with „dh_auto_configure --“ while re-targeting the install path from /usr/lib/ to
/usr/lib/$(DEB_HOST_MULTIARCH)/.

• Replace all occurrences of /usr/lib/ with /usr/lib/*/ in debian/foo.install files.

All files installed simultaneously as the multiarch package to the same file path should have exactly
the same file content. You must be careful with differences generated by the data byte order and by the
compression algorithm.

The shared library files in the default path /usr/lib/ and /usr/lib/<triplet>/ are loaded automatically.
For shared library files in another path, the GCC option -l must be set by the pkg-config command

to make them load properly.

66

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://www.debian.org/doc/debian-policy/ch-opersys.html#file-system-structure

KAPITEL 10. ADVANCED PACKAGING 10.14. MULTIARCH HEADER FILE PATH

10.14 Multiarch header file path
GCC includes both /usr/include/ and /usr/include/<triplet>/ by default on the multiarch Debian system.

If the header file is not in those paths, the GCC option -I must be set by the pkg-config command to
make ”#include <foo.h>” work properly.

Tabelle 10.3 The multiarch header file path options
Classic path i386 multiarch path amd64 multiarch path
/usr/include/ /usr/include/i386-linux-gnu/ /usr/include/x86_64-linux-gnu/
/usr/include/packagename//usr/include/i386-linux-

gnu/packagename/
/usr/include/x86_64-linux-
gnu/packagename/

/usr/lib/i386-linux-
gnu/packagename/

/usr/lib/x86_64-linux-
gnu/packagename/

The use of the /usr/lib/<triplet>/packagename/ path for the library files allows the upstream maintai-
ner to use the same install script for the multiatch system with /usr/lib/<triplet> and the biarch system
with /usr/lib<qual>/. 3

The use of the file path containing packagename enables having more than 2 development libraries
simultaneously installed on a system.

10.15 Multiarch *.pc file path
The pkg-config program is used to retrieve information about installed libraries in the system. It stores
its configuration parameters in the *.pc file and is used for setting the -I and -l options for GCC.

Tabelle 10.4 The *.pc file path options
Classic path i386 multiarch path amd64 multiarch path
/usr/lib/pkgconfig/ /usr/lib/i386-linux-

gnu/pkgconfig/
/usr/lib/x86_64-linux-
gnu/pkgconfig/

10.16 Bibliothekssymbole
The symbols support in dpkg introduced in Debian lenny (5.0, May 2009) helps us to manage the
backward ABI compatibility of the library package with the same package name. The DEBIAN/symbols
file in the binary package provides the minimal version associated with each symbol.

An oversimplified method for the library packaging is as follows.

• Extract the old DEBIAN/symbols file of the immediate previous binary package with the „dpkg-deb
-e“ command.

– Alternatively, the mc command may be used to extract the DEBIAN/symbols file.

• Copy it to the debian/binarypackage.symbols file.

– If this is the first package, use an empty content file instead.

• Build the binary package.

– If the dpkg-gensymbols command warns about some new symbols:

* Extract the updated DEBIAN/symbols file with the „dpkg-deb -e“ command.

* Trim the Debian revision such as -1 in it.

* Copy it to the debian/binarypackage.symbols file.

3This path is compliant with the FHS. „Filesystem Hierarchy Standard: /usr/lib : Libraries for programming and packages“ states
„Applications may use a single subdirectory under /usr/lib. If an application uses a subdirectory, all architecture-dependent data
exclusively used by the application must be placed within that subdirectory.“

67

https://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html#USRLIBLIBRARIESFORPROGRAMMINGANDPA

KAPITEL 10. ADVANCED PACKAGING 10.17. LIBRARY PACKAGE NAME

* Re-build the binary package.
– If the dpkg-gensymbols command does not warn about new symbols:

* You are done with the library packaging.

For the details, you should read the following primary references.

• „8.6.3 The symbols system“ of the „Debian Policy Manual“

• „dh_makeshlibs(1) manapage“

• „dpkg-gensymbols(1) manapage“

• „dpkg-shlibdeps(1) manapage“

• „deb-symbols(5) manapage“

Sie sollten auch Folgendes prüfen:

• Debian wiki: „UsingSymbolsFiles“

• Debian wiki: „Projects/ImprovedDpkgShlibdeps“

• Debian kde team: „Working with symbols files“

• „Abschnitt 14.11“

• „Abschnitt 14.12“

Tipp

For C++ libraries and other cases where the tracking of symbols is problematic,
follow „8.6.4 The shlibs system“ of the „Debian Policy Manual“, instead. Please
make sure to erase the empty debian/binarypackage.symbols file generated by
the debmake command. For this case, the DEBIAN/shlibs file is used.

10.17 Library package name
Let’s consider that the upstream source tarball of the libfoo library is updated from libfoo-7.0.tar.xz to
libfoo-8.0.tar.xz with a new SONAME major version which affects other packages.

The binary library package must be renamed from libfoo7 to libfoo8 to keep the unstable suite system
working for all dependent packages after the upload of the package based on the libfoo-8.0.tar.xz.

Warnung

If the binary library package isn’t renamed, many dependent packages in the
unstable suite become broken just after the library upload even if a binNMU
upload is requested. The binNMU may not happen immediately after the upload
due to several reasons.

The -dev package must follow one of the following naming rules:

• Use the unversioned -dev package name: libfoo-dev

– This is the typical one for leaf library packages.
– Only one version of the library source package is allowed in the archive.

* The associated library package needs to be renamed from libfoo7 to libfoo8 to prevent
dependency breakage in the unstable suite during the library transition.

68

https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-symbols-system
https://wiki.debian.org/UsingSymbolsFiles
https://wiki.debian.org/Projects/ImprovedDpkgShlibdeps
https://qt-kde-team.pages.debian.net/symbolfiles.html
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-shlibs-system

KAPITEL 10. ADVANCED PACKAGING 10.18. BIBLIOTHEKSÜBERGÄNGE

– This approach should be used if the simple binNMU resolves the library dependency quickly
for all affected packages. (ABI change by dropping the deprecated API while keeping the
active API unchanged.)

– This approach may still be a good idea if manual code updates, etc. can be coordinated and
manageable within limited packages. (API change)

• Use the versioned -dev package names: libfoo7-dev and libfoo8-dev

– This is typical for many major library packages.
– Two versions of the library source packages are allowed simultaneously in the archive.

* Make all dependent packages depend on libfoo-dev.

* Make both libfoo7-dev and libfoo8-dev provide libfoo-dev.

* The source package needs to be renamed as libfoo7-7.0.tar.xz and libfoo8-8.0.tar.xz
respectively from libfoo-?.0.tar.xz.

* The package specific install file path including libfoo7 and libfoo8 respectively for header
files etc. needs to be chosen to make them co-installable.

– Do not use this heavy handed approach, if possible.
– This approach should be used if the update of multiple dependent packages require manual

code updates, etc. (API change) Otherwise, the affected packages become RC buggy with
FTBFS (Fails To Build From Source).

Tipp

If the data encoding scheme changes (e.g., latin1 to utf-8), the same care as the
API change needs to be taken.

Siehe „Abschnitt 10.9“.

10.18 Bibliotheksübergänge
When you package a new library package version which affects other packages, you must file a transition
bug report against the release.debian.org pseudo package using the reportbug command with the ben
file and wait for the approval for its upload from the Release Team.

Release team has the „transition tracker“. See „Transitions“.

Achtung

Please make sure to rename binary packages as in „Abschnitt 10.17“.

10.19 biNMU-sicher
A „binNMU“ is a binary-only non-maintainer upload performed for library transitions etc. In a binNMU
upload, only the „Architecture: any“ packages are rebuilt with a suffixed version number (e.g. version
2.3.4-3 will become 2.3.4-3+b1). The „Architecture: all“ packages are not built.

The dependency defined in the debian/control file among binary packages from the same source
package should be safe for the binNMU. This needs attention if there are both „Architecture: any“ and
„Architecture: all“ packages involved in it.

• „Architecture: any“ package: depends on „Architecture: any“ foo package

69

https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://ben.debian.net/#_query_language
https://ben.debian.net/#_query_language
https://wiki.debian.org/Teams/ReleaseTeam
https://release.debian.org/transitions/
https://wiki.debian.org/Teams/ReleaseTeam/Transitions
https://wiki.debian.org/binNMU

KAPITEL 10. ADVANCED PACKAGING 10.20. FEHLERSUCHINFORMATIONEN

– Depends: foo (= ${binary:Version})

• „Architecture: any“ package: depends on „Architecture: all“ bar package

– Depends: bar (= ${source:Version})

• „Architecture: all“ package: depends on „Architecture: any“ baz package

– Depends: baz (>= ${source:Version}), baz (<< ${source:Version}.0~)

10.20 Fehlersuchinformationen
The Debian package is built with the debugging information but packaged into the binary package after
stripping the debugging information as required by „Chapter 10 - Files“ of the „Debian Policy Manual“.

Siehe

• „6.7.9. Best practices for debug packages“ of the „Debian Developer’s Reference“.

• „18.2 Debugging Information in Separate Files“ of the „Debugging with gdb“

• „dh_strip(1) manapage“

• „strip(1) manapage“

• „readelf(1) manapage“

• „objcopy(1) manapage“

• Debian wiki: „DebugPackage“

• Debian wiki: „AutomaticDebugPackages“

• Debian debian-devel post: „Status on automatic debug packages“ (2015-08-15)

10.21 -dbgsym package
The debugging information is automatically packaged separately as the debug package using the dh_strip
command with its default behavior. The name of such a debug package normally has the -dbgsym suffix.

• The debian/rules file shouldn’t explicitly contain dh_strip.

• Set the Build-Depends to debhelper-compat (>=13) while removing Build-Depends to debhel-
per in debian/control.

10.22 debconf
The debconf package enables us to configure packages during their installation in 2 main ways:

• non-interactively from the debian-installer pre-seeding.

• interactively from the menu interface (dialog, gnome, kde, …)

– the package installation: invoked by the dpkg command
– the installed package: invoked by the dpkg-reconfigure command

All user interactions for the package installation must be handled by this debconf system using the
following files.

• debian/binarypackage.config

– This is the debconf config script used for asking any questions necessary to configure the
package.

70

https://www.debian.org/doc/debian-policy/ch-files.html
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-dbg
https://sourceware.org/gdb/current/onlinedocs/gdb/Separate-Debug-Files.html#Separate-Debug-Files
https://wiki.debian.org/DebugPackage
https://wiki.debian.org/AutomaticDebugPackages
https://lists.debian.org/debian-devel/2015/08/msg00443.html

KAPITEL 10. ADVANCED PACKAGING 10.22. DEBCONF

• debian/binarypackage.template

– This is the debconf templates file used for asking any questions necessary to configure the
package.

These debconf files are called by package configuration scripts in the binary Debian package

• DEBIAN/binarypackage.preinst

• DEBIAN/binarypackage.prerm

• DEBIAN/binarypackage.postinst

• DEBIAN/binarypackage.postrm

See dh_installdebconf(1), debconf(7), debconf-devel(7) and „3.9.1 Prompting in maintainer scripts“
in the „Debian Policy Manual“.

71

https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts

Kapitel 11

Packaging with git

Up to „Kapitel 10“, we focused on packaging operations without using Git or any other VCS. These
traditional packaging operations were based on the tarball released by the upstream as mentioned in
„Abschnitt 10.1“.

Currently, the git(1) command is the de-facto platform for the VCS tool and is the essential part of
both upstream development and Debian packaging activities. (See Debian wiki „Debian git packaging
maintainer branch formats and workflows“ for existing VCS workflows.)

Anmerkung

Since the non-native Debian source package uses „diff -u“ as its backend tech-
nology for the maintainer modification, it can’t represent modification involving
symlink, file permissions, nor binary data (March 2022 discussion on debian-
devel@l.d.o). Please avoid making such maintainer modifications even though
these can be recorded in the Git repository.

Since VCS workflows are complicated topic and there are many practice styles, I only touch on some
key points with minimal information, here.

Salsa is the remote Git repository service with associated tools. It offers the collaboration platform for
Debian packaging activities using a custom GitLab application instance. See:

• „Abschnitt 11.1“

• „Abschnitt 11.2“

• „Abschnitt 11.3“

There are 2 styles of branch names for the Git repository used for the packaging. See „Abschnitt 11.4“.
There are 2 main usage styles for the Git repository for the packaging. See:

• „Abschnitt 11.5“

• „Abschnitt 11.6“

There are 2 notable Debian packaging tools for the Git repository for the packaging.

• gbp(1) and its subcommands:

– This is a tool designed to work with „Abschnitt 11.5“.
– See „Abschnitt 11.7“.

• dgit(1) and its subcommands:

– This is a tool designed to work with both „Abschnitt 11.6“ and „Abschnitt 11.5“.
– This contains a tool to upload Debian packages using the dgit server.
– See „Abschnitt 11.8“.

72

https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Version_control
https://wiki.debian.org/GitPackagingSurvey
https://wiki.debian.org/GitPackagingSurvey
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://salsa.debian.org
https://en.wikipedia.org/wiki/GitLab

KAPITEL 11. PACKAGING WITH GIT 11.1. SALSA REPOSITORY

11.1 Salsa repository
It is highly desirable to host Debian source code package on Salsa. Over 90% of all Debian source code
packages are hosted on Salsa. 1

The exact VCS repository hosting an existing Debian source code package can be identified by a me-
tadata field Vcs-* which can be viewed with the apt-cache showsrc <package-name> command.

11.2 Salsa account setup
After signing up for an account on Salsa, make sure that the following pages have the same e-mail
address and GPG keys you have configured to be used with Debian, as well as your SSH key:

• https://salsa.debian.org/-/profile/emails

• https://salsa.debian.org/-/user_settings/gpg_keys

• https://salsa.debian.org/-/user_settings/ssh_keys

11.3 Salsa CI service
Salsa runs Salsa CI service as an instance of GitLab CI for „Abschnitt 10.4“.

For every „git push“ instances, tests which mimic tests run on the official Debian package service
can be run by setting Salsa CI configuration file „Abschnitt 6.13“ as:

include:
- https://salsa.debian.org/salsa-ci-team/pipeline/raw/master/recipes/debian.yml

Customizations here

11.4 Branch names
The Git repository for the Debian packaging should have at least 2 branches:

• debian-branch to hold the current Debian packaging head.

– old style: master (or debian, main, …)
– DEP-14 style: debian/latest

• upstream-branch to hold the upstream releases in the imported form.

– old style: upstream
– DEP-14 style: upstream/latest

In this tutorial, old style branch names are used in examples for simplicity.

Anmerkung

This upstream-branch may need to be created using the tarball released by the
upstream independent of the upstream Git repository since it tends to contain
automatically generated files.

The upstream Git repository content can co-exit in the local Git repository used for the Debian pack-
aging by adding its copy. E.g.:
[debhello] $ git remote add upstreamvcs <url-upstream-git-repo>
[debhello] $ git fetch upstreamvcs master:upstream-master

This allows easy cherry-picking from the upstream Git repository for bug fixes.
1Use of git.debian.org or alioth.debian.org are deprecated now.

73

https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org/-/profile/emails
https://salsa.debian.org/-/user_settings/gpg_keys
https://salsa.debian.org/-/user_settings/ssh_keys
https://salsa.debian.org
https://salsa.debian.org/salsa-ci-team/pipeline
https://docs.gitlab.com/ee/ci/
https://salsa.debian.org/salsa-ci-team/pipeline
https://dep-team.pages.debian.net/deps/dep14/
https://dep-team.pages.debian.net/deps/dep14/

KAPITEL 11. PACKAGING WITH GIT 11.5. PATCH UNAPPLIED GIT REPOSITORY

11.5 Patch unapplied Git repository
The patch unapplied Git repository can be summarized as:

• This seems to be the traditional practice as of 2024.

• The source tree matches extracted contents by „dpkg-source -x --skip-patches“ of the Debian
source package.

– The upstream source is recorded in the Git repository without changes.
– The maintainer modified contents are confined within the debian/* directory.
– Maintainer changes to the upstream source are recorded in debian/patches/* files for the

Debian source format „3.0 (quilt)“.

• This repository style is useful for all variants of traditional workflows and gbp based workflow:

– „Abschnitt 5.7“ (no patch)
– „Abschnitt 5.10“

* debian/patches/* files can also be generated using „git format-patch“, „git diff“, or „gitk“
from git commits in the through-away maintainer modification branch or from the upstream
unreleased commits.

– „Abschnitt 5.11“ including the last „dquilt pop -a“ step
– „Abschnitt 11.9“

• Use helper scripts such as dquilt(1) and gbp-pq(1) to manage data in debian/patches/* files.

– Add .pc line to the ~/.gitignore file if dquilt is used.
– Add unapply-patches and abort-on-upstream-changes lines in the debian/source/local-

options file.

• Use „dpkg-source -b“ to build the Debian source package.

• Use dput(1) to upload the Debian source package.

– Use „dgit --gbp push-source“ or „dgit --gbp push“ instead to upload the Debian package
via the dgit server (see „dgit-maint-gbp(7)“).

The debian/source/local-options and debian/source/local-patch-header files are meant to be re-
corded by the git command. These aren’t included in the Debian source package.

• This allows the extracted files from the generated Debian source package to be the patch-applied
one suitable for NMU.

• This also allows the recorded files outside of the debian/* directory in the git repository to be the
patch-unapplied one without modification for easy history tracking.

11.6 Patch applied Git repository

Anmerkung

The focus of this introductory tutorial „Guide for Debian Maintainers“ isn’t the
patch applied Git repository which is rather a new trend. So minimal explanation
is given here.

The patch applied Git repository can be summarized as:

• The source tree matches extracted contents by „dpkg-source -x“ of the Debian source package.

74

https://www.debian.org/doc/manuals/debmake-doc/

KAPITEL 11. PACKAGING WITH GIT 11.7. NOTE ON GBP

– The source tree is buildable and the same as what NMU maintainers see.
– The source is recorded in the Git repository with maintainer changes including the debian/

directory.
– Maintainer changes to the upstream source are also recorded in debian/patches/* files for

the Debian source format „3.0 (quilt)“.

Use one of workflow styles:

• dgit-maint-merge(7) workflow.

– Use this if you don’t intend to record topic patches in the Debian source package.
– Good enough for packages only with trivial modifications to the upstream.
– Only choice for packages with intertwined modification histories to the upstream
– Add auto-commit and single-debian-patch lines in the debian/source/options file
– Use „git checkout upstream; git pull“ to pull the new upstream commit and use „git check-

out master ; git merge <new-version-tag>“ to merge it to the master branch.
– Use „dgit build-source“ or „dgit sbuild“ to build the Debian source-only or source+binary

package.
– Use „dgit push-source“ or „dgit push-build“ for uploading the Debian source-only or source+binary

package via the dgit server.
– See „Abschnitt 5.12“ for example.

• dgit-maint-debrebase(7) workflow.

– Use this if you wish to commit maintainer changes to the patch applied Git repository with the
same granularity as patches of „Abschnitt 11.9“.

– Good for packages with multiple sequenced modifications to the upstream.
– Use „dgit build-source“ or „dgit sbuild“ to build the Debian source-only or source+binary

package.
– Use „dgit push-source“ or „dgit push-build“ for uploading the Debian source-only or source+binary

package via the dgit server.
– Details of this workflow are beyond the scope of this tutorial document. See „Abschnitt 11.8“

for more.

11.7 Note on gbp
The gbp command is provided by the git-buildpackage package.

• This command is designed to manage contents of „Abschnitt 11.5“ efficiently.

• Use „gbp import-orig“ to import the new upstream tar to the git repository.

– The „--pristine-tar“ option for the „git import-orig“ command enables storing the upstream
tarball in the same git repository.

– The „--uscan“ option as the last argument of the „gbp import-orig“ command enables down-
loading and committing the new upstream tarball into the git repository.

• Use „gbp import-dsc“ to import the previous Debian source package to the git repository.

• Use „gbp dch“ to generate the Debian changelog from the git commit messages.

• Use „gbp buildpackage“ to build the Debian binary package from the git repository.

– The sbuild package can be used as its clean chroot build backend either by configuration or
adding „--git-builder=’sbuild -A -s --source-only-changes -v -d unstable’“

• Use „gbp pull“ to update the debian, upstream and pristine-tar branches safely from the remote
repository.

75

KAPITEL 11. PACKAGING WITH GIT 11.8. NOTE ON DGIT

• Use „gbp pq“ to manage quilt patches without using dquilt command.

• Use „gbp clone REPOSITORY_URL“ to clone and set up tracking branches for debian, upstream
and pristine-tar.

Package history management with the git-buildpackage package is becoming the standard practice
for many Debian maintainers. See more at:

• „Building Debian Packages with git-buildpackage“

• „4 tips to maintain a “3.0 (quilt)” Debian source package in a VCS“

• The systemd packaging practice documentation on „Building from source“

• The workflow mentioned in dgit-maint-gbp(7) which enables to use this gbp with dgit

11.8 Note on dgit
The dgit command is provided by the dgit package.

• This command is designed to manage contents of „Abschnitt 11.6“ efficiently.

– This enables to access the Debian package repository as if it is a git remote repository.

• This command supports uploading Debian packages using the dgit server from both „Abschnitt 11.5“
and „Abschnitt 11.6“.

The new dgit package offers commands interact with the Debian repository as if it was a git re-
pository. It does not replace gbp-buildpackage and both can be used at the same time. Using plain
gbp-buildpackage is recommended for developers who want to run git push/pull on Salsa and use
things such as Salsa CI or Merge Requests on Salsa.

For more details see the extensive guides:

• dgit-maint-merge(7) — for the Debian non-native package with its changes flowing both ways
between the upstream Git repository and the Debian Git repository which are tightly coupled using
„Abschnitt 11.6“.

• dgit-maint-debrebase(7) — for the Debian non-native package with its changes flowing mostly
one way from the upstream Git repository to the Debian Git repository using „Abschnitt 11.6“.

• dgit-maint-native(7) — for the Debian native package in the Debian Git repository. (No maintainer
changes)

• dgit-maint-gbp(7) — for the Debian non-native package using source format „3.0 (quilt)“ with its
Debian Git repository which is kept usable also for people using gbp-buildpackage(1) using „Ab-
schnitt 11.5“.

The dgit(1) command can push the easy-to-trace change history to the https://browse.dgit.debian.org/-
site and can upload Debian package to the Debian repository properly without using dput(1).

Here are some hints.

• For a package already using dgit, start with „dgit clone package“ to construct the git view of history
for package.

• For a package not yet using dgit but has its cloned git working tree, start with „dgit setup-new-
tree“ to configure the current working tree the way that „dgit clone package“ would have set it
up.

• In order to keep the working tree dgit-compatible, delete debian/source/local-options if it exists.

Topics around dgit are beyond this tutorial document to cover them in depth. Please start reading
relevant information:

• dgit(1)

76

https://honk.sigxcpu.org/projects/git-buildpackage/manual-html/gbp.html
https://raphaelhertzog.com/2010/11/18/4-tips-to-maintain-a-3ZZZZ-0-quilt-debian-source-package-in-a-vcs/
https://salsa.debian.org/systemd-team/systemd/-/blob/debian/master/debian/README.source
https://browse.dgit.debian.org/

KAPITEL 11. PACKAGING WITH GIT 11.9. PATCH BY „GBP-PQ“ APPROACH

– dgit-maint-merge(7)
– dgit-maint-debrebase(7)
– dgit-maint-native(7)
– dgit-maint-gbp(7)

• git-debrebase(1)

• „dgit: use the Debian archive as a git remote (2015)“

• „tag2upload (2023)“

11.9 Patch by „gbp-pq“ approach
For „Abschnitt 11.5“, you can generate debian/patches/* files using the gbp-pq(1) command from git
commits in the through-away patch-queue branch.

Unlike dquilt which offers similar functionality as seen „Abschnitt 5.11“ and „Abschnitt 9.5“, gbp-pq
doesn’t use .pc/* files to track patch state, but instead gbp-pq utilizes temporary branches in git.

11.10 Manage patch queue with gbp-pq
You can add, drop, and refresh debian/patches/* files with gbp-pq to manage patch queue.

If the package is managed in „Abschnitt 11.5“ using the git-buildpackage package, you can revise
the upstream source to fix bug as the maintainer and release a new Debian revision using gbp pq.

• Add a new patch recording the upstream source modification on the file buggy_file as:

[debhello] $ git checkout master
[debhello] $ gbp pq import
gbp:info: ... imported on 'patch-queue/master
[debhello] $ vim buggy_file
...

[debhello] $ git add buggy_file
[debhello] $ git commit
[debhello] $ gbp pq export
gbp:info: On 'patch-queue/master', switching to 'master'
gbp:info: Generating patches from git (master..patch-queue/master)
[debhello] $ git add debian/patches/*
[debhello] $ dch -i
[debhello] $ git commit -a -m "Closes: #<bug_number>"
[debhello] $ git tag debian/<version>-<rev>

• Drop (== disable) an existing patch

– Comment out pertinent line in debian/patches/series
– Erase the patch itself (optional)

• Refresh debian/patches/* files to make „dpkg-source -b“ work as expected after updating a De-
bian package to the new upstream release.

[debhello] $ git checkout master
[debhello] $ gbp pq --force import # ensure patch-queue/master branch
gbp:info: ... imported on 'patch-queue/master
[debhello] $ git checkout master
[debhello] $ gbp import-orig --pristine-tar --uscan
...

gbp:info: Successfully imported version ?.?.? of ../packagename_?.?.?.orig. ←↩
tar.xz

[debhello] $ gbp pq rebase
... resolve conflicts and commit to patch-queue/master branch
[debhello] $ gbp pq export

77

https://www.chiark.greenend.org.uk/~ijackson/2015/debconf-dgit-talk/slides.pdf
https://wiki.debian.org/DebianEvents/gb/2023/MiniDebConfCambridge/Jackson?action=AttachFile&do=get&target=slides.pdf

KAPITEL 11. PACKAGING WITH GIT 11.11. GBP IMPORT-DSCS --DEBSNAP

gbp:info: On 'patch-queue/master', switching to 'master'
gbp:info: Generating patches from git (master..patch-queue/master)
[debhello] $ git add debian/patches
[debhello] $ git commit -m "Update patches"
[debhello] $ dch -v <newversion>-1
[debhello] $ git commit -a -m "release <newversion>-1"
[debhello] $ git tag debian/<newversion>-1

11.11 gbp import-dscs --debsnap
For Debian source packages named „<source-package>“ recorded in the snapshot.debian.org archive,
an initial git repository managed in „Abschnitt 11.5“ with all of the Debian version history can be generated
as follows.

[debhello] $ gbp import-dscs --debsnap --pristine-tar <source-package>

11.12 Quasi-native Debian packaging
The quasi-native packaging scheme packages a source without the real upstream tarball using the non-
native package format.

Tipp

Some people promote this quasi-native packaging scheme even for programs
written only for Debian since it helps to ease communication with the downstream
distros such as Ubuntu for bug fixes etc.

This quasi-native packaging scheme involves 2 preparation steps:

• Organize its source tree almost like native Debian package (see „Abschnitt 6.4“) with debian/* files
with a few exceptions:

– Make debian/source/format to contain „3.0 (quilt)“ instead of „3.0 (native)“ .
– Make debian/changelog to contain version-revision instead of version .

• Generate missing upstream tarball preferably without debian/* files.

– For Debian source format „3.0 (quilt)“, removal of files under debian/ directory is an optional
action.

The rest is the same as the non-native packaging workflow as written in „Abschnitt 6.1“.
Although this can be done in many ways („Abschnitt 16.3“), you can use the Git repository and „git

deborig“ as:

[~] $ cd /path/to/debhello
[debhello] $ dch -r
... set its <version>-<revision>, e.g., 1.0-1

[debhello] $ git tag -s debian/1.0-1
[debhello] $ git rm -rf debian
[debhello] $ git tag -s upstream/1.0
[debhello] $ git commit -m upstream/1.0
[debhello] $ git reset --hard HEAD^
[debhello] $ git deborig
[debhello] $ sbuild

78

http://snapshot.debian.org/

KAPITEL 11. PACKAGING WITH GIT 11.13. GIT COMMIT HISTORY ORGANIZATION

11.13 Git commit history organization
When your local Git commit history becomes intertwined, you need to organize it before pushing it out
to the public.

The most simple organization process is to squash all changes to a single commit using „git rebase -
i“. But this may create a huge illegible commit. Manually splitting the squashed commit using the splitdiff
command from the patchutils is an option but may be quite cumbersome.

More fine grained organization process can use „git rebase -i“ in combination with „git add some_file“
and „git commit“. But this may be quite cumbersome.

For this task, the „git ime“ command in the imediff package can help. It automatically splits a single
commit with many files into multiple commits involving only a single file changes. When operating on a
single file change commit, it interactively splits the commit into multiple commits of line changes. Invoking
it with the --auto* option will automate this commit operation. Now you can manage changes interactively
using „git rebase -i“. By using gitk on the working tree along this task, you get decent visibility over all
commits.

79

Kapitel 12

Tipps

Please also read insightful pages linked from „Notes on Debian“ by Russ Allbery (long time Debian
developer) which have best practices for advanced packaging topics.

12.1 Build under UTF-8
The default locale of the build environment is C.

Some programs such as the read function of Python3 change their behavior depending on the locale.
Adding the following code to the debian/rules file ensures building the program under the C.UTF-8

locale.

LC_ALL := C.UTF-8
export LC_ALL

12.2 UTF-8 conversion
If upstream documents are encoded in old encoding schemes, converting them to UTF-8 is a good idea.

Use the iconv command in the libc-bin package to convert the encoding of plain text files.

[debhello] $ iconv -f latin1 -t utf8 foo_in.txt > foo_out.txt

Use w3m(1) to convert from HTML files to UTF-8 plain text files. When you do this, make sure to
execute it under UTF-8 locale.

[debhello] $ LC_ALL=C.UTF-8 w3m -o display_charset=UTF-8 \
-cols 70 -dump -no-graph -T text/html \
< foo_in.html > foo_out.txt

Run these scripts in the override_dh_* target of the debian/rules file.

12.3 Hints for Debugging
When you face build problems or core dumps of generated binary programs, you need to resolve them
yourself. That’s debug.

This is too deep a topic to describe here. So, let me just list few pointers and hints for some typical
debug tools.

• Wikipedia: „core dump“

– „man core“
– Update the „/etc/security/limits.conf“ file to include the following:

* soft core unlimited

80

https://www.eyrie.org/~eagle/notes/debian/
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Core_dump

KAPITEL 12. TIPPS 12.3. HINTS FOR DEBUGGING

– „ulimit -c unlimited“ in ~/.bashrc
– „ulimit -a“ to check
– Press Ctrl-\ or „kill -ABRT ’PID’“ to make a core dump file

• gdb - The GNU Debugger

– „info gdb“
– „Debugging with GDB“ in /usr/share/doc/gdb-doc/html/gdb/index.html

• strace - Trace system calls and signals

– Use strace-graph script found in /usr/share/doc/strace/examples/ to make a nice tree view
– „man strace“

• ltrace - Trace library calls

– „man ltrace“

• „sh -n script.sh“ - Syntax check of a Shell script

• „sh -x script.sh“ - Trace a Shell script

• „python3 -m py_compile script.py“ - Syntax check of a Python script

• „python3 -mtrace --trace script.py“ - Trace a Python script

• „perl -I ../libpath -c script.pl“ - Syntax check of a Perl script

• „perl -d:Trace script.pl“ - Trace a Perl script

– Install the libterm-readline-gnu-perl package or its equivalent to add input line editing capa-
bility with history support.

• lsof - List open files by processes

– „man lsof“

Tipp

Der Befehl script zeichnet Konsoleausgaben auf.

Tipp

Die Befehle screen und tmux bieten Ihnen im Zusammenspiel mit ssh eine si-
chere und robuste Verbindung zu fernen Terminals.

Tipp

A Python- and Shell-like REPL (=READ + EVAL + PRINT + LOOP) environment
for Perl is offered by the reply command from the libreply-perl (new) package
and the re.pl command from the libdevel-repl-perl (old) package.

81

KAPITEL 12. TIPPS 12.3. HINTS FOR DEBUGGING

Tipp

The rlwrap and rlfe commands add input line editing capability with history sup-
port to any interactive commands. E.g. „rlwrap dash -i’“ .

82

Kapitel 13

Tool usages

Here are some notable tools around Debian packaging.

Anmerkung

The descriptions in this section are intentionally brief. Prospective maintainers are
strongly encouraged to search for and read all relevant documentation associated
with these commands.

Anmerkung

Examples here use the gz-compression. The xz-compression may be used ins-
tead.

13.1 debdiff
Sie können die Dateiinhalte in zwei Quellpaketen mit dem Befehl debdiff vergleichen.

[base_dir] $ debdiff old-package.dsc new-package.dsc

Sie können auch Dateilisten in zwei Gruppen von Debian-Binärpekten mit dem Befehl debdiff ver-
gleichen.

[base_dir] $ debdiff old-package.changes new-package.changes

Diese sind nützlich, um herauszufinden, was sich in Quellpaketen geändert hat und zu prüfen, ob
unbeabsichtigte Änderungen beim Aktualisieren der Binärpakete erfolgten, wie bespielsweise falsch an-
geordnete oder entfernte Dateien.

Debian now enforces the source-only upload when developing packages. So there may be 2 different
*.changes files:

• package_version-revision_source.changes for the normal source-only upload

• package_version-revision_arch.changes for the source+binary upload

13.2 dget
Mit dem Befehl dget können Sie eine Gruppe von Dateien für das Debian-Quellpaket herunterladen.

[base_dir] $ dget https://www.example.org/path/to/package_version-rev.dsc

83

KAPITEL 13. TOOL USAGES 13.3. MK-ORIGTARGZ

13.3 mk-origtargz
You can make the upstream tarball ../foo-newversion.tar.[xg]z accessible from the Debian source tree
as ../foo_newversion.orig.tar.[xg]z. This command is useful for renaming and symlinking the upstream
tarball to the expected Debian naming convention.

13.4 origtargz
You can fetch the pre-existing orig tarball of a Debian package from various sources, and unpack it with
origtargz command.

This is basically for -2, -3, … revisions.

13.5 git deborig
If the upstream project is hosted in a Git repository without an official tarball release, you can generate
its orig tarball from the git repository for use by the Debian source package. Execute „git deborig“ from
the root of the checked-out source tree.

This is basically for -1 revisions.

13.6 dpkg-source -b
The „dpkg-source -b“ command packs the upstream source tree into the Debian source package.

It expects a series of patches in the debian/patches/ directory and their application sequence in
debian/patches/series.

It is compatible with dquilt (see „Abschnitt 4.4“) operations and understands the patch application
status from the existence of .pc/applied-patches.

The dpkg-buildpackage command invokes „dpkg-source -b“.

13.7 dpkg-source -x
The „dpkg-source -x“ command extracts the source tree and applies the patches in the debian/patches/
directory using the sequence specified in debian/patches/series to the upstream source tree. It also
adds .pc/applied-patches. (See „Abschnitt 11.6“.)

The „dpkg-source -x --skip-patches“ command extracts source tree only. It doesn’t add .pc/applied-
patches. (See „Abschnitt 11.5“.)

Both extracted source trees are ready for building Debian binary packages with dpkg-buildpackage,
dbuild, sbuild, etc..

13.8 debc
Sie sollten erstellte Pakete mit dem Befehl debc lokal installieren, um sie zu testen.

[base_dir] $ debc package_version-rev_arch.changes

13.9 piuparts
You should install generated packages with the piuparts command to test it automatically.

[base_dir] $ sudo piuparts package_version-rev_arch.changes

84

KAPITEL 13. TOOL USAGES 13.10. BTS

Anmerkung

This is a very slow process with remote APT package repository access.

13.10 bts
After uploading the package, you will receive bug reports. It is an important duty of a package main-
tainer to manage these bugs properly, as described in „5.8. Handling bugs“ of the „Debian Developer’s
Reference“.

The bts command is a handy tool to manage bugs on the „Debian Bug Tracking System“.

[~] $ bts severity 123123 wishlist , tags -1 pending

85

https://www.debian.org/doc/manuals/developers-reference/pkgs.html#bug-handling
https://www.debian.org/Bugs/

Kapitel 14

Weitere Beispiele

There is an old Latin saying: „fabricando fit faber“ („practice makes perfect“).
Es wird nachdrücklich empfohlen, mit einfachen Paketen zu üben und mit allen Schritten der Debian-

Paketierung zu experimentieren. Dieses Kapitel stellt Ihnen viele Fälle von Originalautoren zur Übung
bereit.

This should also serve as introductory examples for many programming topics.

• Programming in the POSIX shell, Python3, and C.

• Methode, um ein Desktop-GUI-Programmstarter mit Icon-Graphiken zu erstellen.

• Conversion of a command from CLI to GUI.

• Conversion of a program to use gettext for internationalization and localization: POSIX shell and
C sources.

• Overview of many build systems: Makefile, Python, Autotools, and CMake.

Bitte beachten Sie, dass Debian ein paar Dinge sehr Ernst nimmt:

• Freie Software (auch als Libre Software bekannt)

• Stabilität und Sicherheit des Betriebssystems

• Universelles Betriebssystem mittels:

– freier Wahl der Quellen der Originalautoren
– freier Wahl der CPU-Architektur und
– freier Wahl der Sprachen für Oberflächen.

Das in „Kapitel 5“ dargestellte Beispiel ist die Voraussetzung für dieses Kapitel.
Some details are intentionally left vague in the following sections. Please try to read the pertinent

documentation and practice yourself to find them out.

Tipp

The best source of a packaging example is the current Debian archive itself.
Please use the „Debian Code Search“ service to find pertinent examples.

14.1 Cherry-pick templates
Here is an example of creating a simple Debian package from a zero-content source in an empty directory.

This is a good way to obtain all the template files without cluttering the upstream source tree you are
working on.

Let’s assume this empty directory to be debhello-0.1.

86

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Internationalization_and_localization
https://codesearch.debian.net/

KAPITEL 14. WEITERE BEISPIELE 14.1. CHERRY-PICK TEMPLATES

[base_dir] $ mkdir debhello-0.1
[base_dir] $ tree
.
+-- debhello-0.1

2 directories, 0 files

Let’s generate the maximum amount of template files.
Let’s also use the „-p debhello -t -x3 -u 0.1 -r 1“ options to create the missing upstream tarball with

optional -x3, and -t options.

[base_dir] $ cd debhello-0.1
[debhello-0.1] $ debmake -p debhello -x3 -t -T -u 0.1 -r 1
I: debmake (version: 5.1.0)
...

Lassen Sie uns die erstellten Vorlagendateien anschauen.

[debhello-0.1] $ cd ..
[base_dir] $ tree
.
+-- debhello-0.1
| +-- debian
| +-- README.Debian
| +-- README.source
| +-- bug-control.ex
| +-- bug-presubj.ex
| +-- bug-script.ex
| +-- changelog
| +-- clean
| +-- conffiles.ex
| +-- control
| +-- copyright
| +-- cron.d.ex
| +-- cron.daily.ex
| +-- cron.hourly.ex
| +-- cron.monthly.ex
| +-- cron.weekly.ex
| +-- default.ex
| +-- dirs
| +-- doc-base.ex
| +-- docs
| +-- emacsen-install.ex
| +-- emacsen-remove.ex
| +-- emacsen-startup.ex
| +-- examples
| +-- gbp.conf
| +-- info.ex
| +-- install
| +-- links
| +-- lintian-overrides.ex
| +-- maintscript.ex
| +-- manpage.1.ex
| +-- manpage.asciidoc.ex
| +-- manpage.md.ex
| +-- manpage.sgml.ex
| +-- manpage.xml.ex
| +-- manpages
| +-- patches
| | +-- series
| +-- postinst.ex
| +-- postrm.ex
| +-- preinst.ex
| +-- prerm.ex

87

KAPITEL 14. WEITERE BEISPIELE 14.2. KEIN MAKEFILE (SHELL, CLI)

| +-- rules
| +-- salsa-ci.yml
| +-- service.ex
| +-- source
| | +-- format
| | +-- lintian-overrides.ex
| | +-- local-options.ex
| | +-- local-patch-header.ex
| | +-- options.ex
| | +-- patch-header.ex
| +-- tests
| | +-- control
| +-- tmpfile.ex
| +-- upstream
| | +-- metadata
| +-- watch
+-- debhello-0.1.tar.xz
+-- debhello_0.1.orig.tar.xz -> debhello-0.1.tar.xz

7 directories, 55 files

Now you can copy any of these generated template files in the debhello-0.1/debian/ directory to your
package as needed while renaming them as needed.

14.2 Kein Makefile (Shell, CLI)
Here is an example of creating a simple Debian package from a POSIX shell CLI program without its
build system.

Let’s assume this upstream tarball to be debhello-0.2.tar.xz.
This type of source has no automated means and files must be installed manually.
Zum Beispiel:

[base_dir] $ tar -xzmf debhello-0.2.tar.xz
[base_dir] $ cd debhello-0.2
[debhello-0.2] $ sudo cp scripts/hello /bin/hello
...

Let’s get this source as tar file from a remote site and make it the Debian package.
Download debhello-0.2.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-0.2.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-0.2.tar.xz
[base_dir] $ tree
.
+-- debhello-0.2
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-0.2.tar.xz

5 directories, 6 files

Here, the POSIX shell script hello is a very simple one.
hello (v=0.2)

[base_dir] $ cat debhello-0.2/scripts/hello
#!/bin/sh -e

88

KAPITEL 14. WEITERE BEISPIELE 14.2. KEIN MAKEFILE (SHELL, CLI)

echo "Hello from the shell!"
echo ""
echo -n "Type Enter to exit this program: "
read X

Here, hello.desktop supports the „Desktop Entry Specification“.
hello.desktop (v=0.2)

[base_dir] $ cat debhello-0.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=true
Icon=hello.png
Categories=Utility;

Here, hello.png is the icon graphics file.
Let’s package this with the debmake command. Here, the -b’:sh’ option is used to specify that the

generated binary package is a shell script.

[base_dir] $ cd debhello-0.2
[debhello-0.2] $ debmake -b':sh' -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-0.2] $ cd ..
I: Non-native Debian package pkg="debhello", ver="0.2", rev="1" method="dir_d...
I: already in the package-version form: "debhello-0.2"
I: [base_dir] $ ln -sf debhello-0.2.tar.xz debhello_0.2.orig.tar.xz
I: [base_dir] $ cd debhello-0.2
I: parsing option -b ":sh"
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: build_type = Unknown
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: ext_type = md 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-0.2] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

Let’s inspect notable template files generated.
The source tree after the basic debmake execution. (v=0.2)

[debhello-0.2] $ cd ..
[base_dir] $ tree
.
+-- debhello-0.2
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- debian
| | +-- README.Debian
| | +-- README.source
| | +-- changelog

89

https://www.freedesktop.org/wiki/Specifications/desktop-entry-spec/

KAPITEL 14. WEITERE BEISPIELE 14.2. KEIN MAKEFILE (SHELL, CLI)

| | +-- clean
| | +-- control
| | +-- copyright
| | +-- dirs
| | +-- docs
| | +-- examples
| | +-- gbp.conf
| | +-- install
| | +-- links
| | +-- manpages
| | +-- patches
| | | +-- series
| | +-- rules
| | +-- salsa-ci.yml
| | +-- source
| | | +-- format
| | +-- tests
| | | +-- control
| | +-- upstream
| | | +-- metadata
| | +-- watch
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-0.2.tar.xz
+-- debhello_0.2.orig.tar.xz -> debhello-0.2.tar.xz

10 directories, 27 files

debian/rules (Vorlagendatei, v=0.2):
[base_dir] $ cd debhello-0.2
[debhello-0.2] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax

90

KAPITEL 14. WEITERE BEISPIELE 14.2. KEIN MAKEFILE (SHELL, CLI)

%:
dh $@

debmake generated override targets

This is essentially the standard debian/rules file with the dh command. Since this is the script packa-
ge, this template debian/rules file has no build flag related contents.

debian/control (Vorlagendatei, v=0.2):

[debhello-0.2] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello
Section: unknown
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.
.
===== This comes from the unmodified template file =====
.
Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch05.en.html#control
.
The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''—b'' "a", "an", or "the".
.
The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.
.
Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Since this is the shell script package, the debmake command sets „Architecture: all“ and „Multi-
Arch: foreign“. Also, it sets required substvar parameters as „Depends: ${misc:Depends}“. These
are explained in „Kapitel 6“.

Since this upstream source lacks the upstream Makefile, that functionality needs to be provided by
the maintainer. This upstream source contains only a script file and data files and no C source files;
the build process can be skipped but the install process needs to be implemented. For this case, this
is achieved cleanly by adding the debian/install and debian/manpages files without complicating the
debian/rules file.

91

KAPITEL 14. WEITERE BEISPIELE 14.2. KEIN MAKEFILE (SHELL, CLI)

Let’s make this Debian package better as the maintainer.
debian/rules (Betreuerversion, v=0.2):

[base_dir] $ cd debhello-0.2
[debhello-0.2] $ vim debian/rules
... hack, hack, hack, ...
[debhello-0.2] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1

%:
dh $@

debian/control (Betreuerversion, v=0.2):

[debhello-0.2] $ vim debian/control
... hack, hack, hack, ...
[debhello-0.2] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Warnung

If you leave „Section: unknown“ in the template debian/control file unchanged,
the lintian error may cause a build failure.

debian/install (Betreuerversion, v=0.2):

[debhello-0.2] $ vim debian/install
... hack, hack, hack, ...
[debhello-0.2] $ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps
scripts/hello usr/bin

debian/manpages (Betreuerversion, v=0.2):

$ vim debian/manpages
... hack, hack, hack, ...
[debhello-0.2] $ cat debian/manpages
man/hello.1

Es gibt eine Reihe von weiteren Vorlagendateien unter dem Verzeichnis debian/. Diese müssen auch
aktualisiert werden.

Vorlagendateien unter debian/. (v=0.2):

92

KAPITEL 14. WEITERE BEISPIELE 14.2. KEIN MAKEFILE (SHELL, CLI)

[debhello-0.2] $ rm -f debian/clean debian/dirs debian/links
[debhello-0.2] $ rm -f debian/README.source debian/source/*.ex
[debhello-0.2] $ rm -rf debian/patches
[debhello-0.2] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- install
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 15 files

You can create a non-native Debian package using the debuild command (or its equivalents) in this
source tree. The command output is very verbose and explains what it does as follows.

[base_dir] $ cd debhello-0.2
[debhello-0.2] $ debuild
dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.2-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .
dpkg-buildpackage: info: host architecture amd64
debian/rules clean
dh clean

dh_clean
rm -f debian/debhelper-build-stamp

...
debian/rules binary
dh binary

dh_update_autotools_config
dh_autoreconf
create-stamp debian/debhelper-build-stamp
dh_prep

rm -f -- debian/debhello.substvars
rm -fr -- debian/.debhelper/generated/debhello/ debian/debhello/ debi...

dh_auto_install --destdir=debian/debhello/
...
Finished running lintian.

Lassen Sie uns die Ergebnisse anschauen.
The generated files of debhello version 0.2 by the debuild command:

[debhello-0.2] $ cd ..
[base_dir] $ tree -FL 1
./
+-- debhello-0.2/
+-- debhello-0.2.tar.xz
+-- debhello_0.2-1.debian.tar.xz

93

KAPITEL 14. WEITERE BEISPIELE 14.2. KEIN MAKEFILE (SHELL, CLI)

+-- debhello_0.2-1.dsc
+-- debhello_0.2-1_all.deb
+-- debhello_0.2-1_amd64.build
+-- debhello_0.2-1_amd64.buildinfo
+-- debhello_0.2-1_amd64.changes
+-- debhello_0.2.orig.tar.xz -> debhello-0.2.tar.xz

2 directories, 8 files

You see all the generated files.

• The debhello_0.2.orig.tar.xz file is a symlink to the upstream tarball.

• The debhello_0.2-1.debian.tar.xz file contains the maintainer generated contents.

• The debhello_0.2-1.dsc file is the meta data file for the Debian source package.

• Die Datei debhello_0.2-1_all.deb ist das Debian-Binärpaket.

• The debhello_0.2-1_amd64.build file is the build log file.

• The debhello_0.2-1_amd64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).

• The debhello_0.2-1_amd64.changes file is the meta data file for the Debian binary package.

The debhello_0.2-1.debian.tar.xz file contains the Debian changes to the upstream source as fol-
lows.

The compressed archive contents of debhello_0.2-1.debian.tar.xz:

[base_dir] $ tar --xz -tf debhello-0.2.tar.xz
debhello-0.2/
debhello-0.2/data/
debhello-0.2/data/hello.desktop
debhello-0.2/data/hello.png
debhello-0.2/man/
debhello-0.2/man/hello.1
debhello-0.2/scripts/
debhello-0.2/scripts/hello
debhello-0.2/README.md
[base_dir] $ tar --xz -tf debhello_0.2-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/docs
debian/examples
debian/gbp.conf
debian/install
debian/manpages
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

The debhello_0.2-1_amd64.deb file contains the files to be installed as follows.
The binary package contents of debhello_0.2-1_all.deb:

[base_dir] $ dpkg -c debhello_0.2-1_all.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/

94

KAPITEL 14. WEITERE BEISPIELE 14.3. MAKEFILE (SHELL, CLI)

drwxr-xr-x root/root/usr/bin/
-rwxr-xr-x root/root/usr/bin/hello
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/applications/
-rw-r--r-- root/root/usr/share/applications/hello.desktop
drwxr-xr-x root/root/usr/share/doc/
drwxr-xr-x root/root/usr/share/doc/debhello/
-rw-r--r-- root/root/usr/share/doc/debhello/README.Debian
-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright
drwxr-xr-x root/root/usr/share/man/
drwxr-xr-x root/root/usr/share/man/man1/
-rw-r--r-- root/root/usr/share/man/man1/hello.1.gz
drwxr-xr-x root/root/usr/share/pixmaps/
-rw-r--r-- root/root/usr/share/pixmaps/hello.png

Dies ist die erstellte Abhängigkeitsliste von debhello_0.2-1_all.deb.
The generated dependency list of debhello_0.2-1_all.deb:

[debhello-0.2] $ dpkg -f debhello_0.2-1_all.deb pre-depends \
depends recommends conflicts breaks

(No extra dependency packages required since this is a POSIX shell program.)

Anmerkung

If you wish to replace upstream provided PNG file data/hello.png with maintai-
ner provided one debian/hello.png, editing debian/install isn’t enough. When
you add debian/hello.png, you need to add a line „include-binaries“ to debi-
an/source/options since PNG is a binary file. See dpkg-source(1).

/tep200.slog/ vim:set filetype=asciidoc:

14.3 Makefile (Shell, CLI)
Here is an example of creating a simple Debian package from a POSIX shell CLI program using the
Makefile as its build system.

Let’s assume its upstream tarball to be debhello-1.0.tar.xz.
Diese Art der Quellen soll als Nichtsystemdatei wie folgt instaliert werden:

[base_dir] $ tar -xzmf debhello-1.0.tar.xz
[base_dir] $ cd debhello-1.0
[debhello-1.0] $ make install

Debian packaging requires changing this „make install“ process to install files to the target system
image location instead of the normal location under /usr/local.

Let’s get the source and make the Debian package.
Download debhello-1.0.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.0.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.0.tar.xz
[base_dir] $ tree
.
+-- debhello-1.0
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man

95

KAPITEL 14. WEITERE BEISPIELE 14.3. MAKEFILE (SHELL, CLI)

| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-1.0.tar.xz

5 directories, 7 files

Here, the Makefile uses $(DESTDIR) and $(prefix) properly. All other files are the same as in „Ab-
schnitt 14.2“ and most of the packaging activities are the same.

Makefile (v=1.0)

[base_dir] $ cat debhello-1.0/Makefile
prefix = /usr/local

all:
: # do nothing

install:
install -D scripts/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
: # do nothing

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

Let’s package this with the debmake command. Here, the -b’:sh’ option is used to specify that the
generated binary package is a shell script.

[base_dir] $ cd debhello-1.0
[debhello-1.0] $ debmake -b':sh' -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.0] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.0", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.0"
I: [base_dir] $ ln -sf debhello-1.0.tar.xz debhello_1.0.orig.tar.xz
I: [base_dir] $ cd debhello-1.0
I: parsing option -b ":sh"
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: build_type = make
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: ext_type = md 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.0] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules

96

KAPITEL 14. WEITERE BEISPIELE 14.3. MAKEFILE (SHELL, CLI)

I: creating debian/source/format from extra0source_format
...

Let’s inspect the notable template files generated.
debian/rules (Vorlagendatei, v=1.0):

[base_dir] $ cd debhello-1.0
[debhello-1.0] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@

debmake generated override targets
Use "make prefix=/usr" (override prefix=/usr/local in Makefile)
#override_dh_auto_install:
dh_auto_install -- prefix=/usr

Do not install python .pyc .pyo if they exist
#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

Let’s make this Debian package better as the maintainer.
debian/rules (Betreuerversion, v=1.0):

[base_dir] $ cd debhello-1.0
[debhello-1.0] $ vim debian/rules
... hack, hack, hack, ...
[debhello-1.0] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1

%:
dh $@

override_dh_auto_install:

97

KAPITEL 14. WEITERE BEISPIELE 14.4. PYPROJECT.TOML (PYTHON3, CLI)

dh_auto_install -- prefix=/usr

Since this upstream source has the proper upstream Makefile, there is no need to create debi-
an/install and debian/manpages files.

The debian/control file is exactly the same as the one in „Abschnitt 14.2“.
Es gibt eine Reihe von weiteren Vorlagendateien unter dem Verzeichnis debian/. Diese müssen auch

aktualisiert werden.
Vorlagendateien unter debian/. (v=1.0):

[debhello-1.0] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-1.0] $ rm -f debian/README.source debian/source/*.ex
[debhello-1.0] $ rm -rf debian/patches
[debhello-1.0] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 14 files

The rest of the packaging activities are practically the same as the ones in „Abschnitt 14.2“.

14.4 pyproject.toml (Python3, CLI)
Here is an example of creating a simple Debian package from a Python3 CLI program using pypro-
ject.toml.

Let’s get the source and make the Debian package.
Download debhello-1.1.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.1.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.1.tar.xz
[base_dir] $ tree
.
+-- debhello-1.1
| +-- LICENSE
| +-- MANIFEST.in
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- manpages
| | +-- hello.1
| +-- pyproject.toml
| +-- src
| +-- debhello
| +-- __init__.py
| +-- main.py
+-- debhello-1.1.tar.xz

98

KAPITEL 14. WEITERE BEISPIELE 14.4. PYPROJECT.TOML (PYTHON3, CLI)

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.1) — PEP 517 configuration

[base_dir] $ cat debhello-1.1/pyproject.toml
[build-system]
requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.1.0"
description = "Hello Python (CLI)"
readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"
license = "MIT"
keywords = ["debhello"]
authors = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
maintainers = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",

"Topic :: System :: Archiving :: Packaging",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
Others
"Operating System :: POSIX :: Linux",
"Natural Language :: English",

]
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]
package-dir = {"" = "src"}
packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.1) — for tar-ball.

[base_dir] $ cat debhello-1.1/MANIFEST.in
include data/*
include manpages/*

src/debhello/__init__.py (v=1.1)

[base_dir] $ cat debhello-1.1/src/debhello/__init__.py
"""
debhello program (CLI)
"""

src/debhello/main.py (v=1.1) — command entry point

[base_dir] $ cat debhello-1.1/src/debhello/main.py
"""
debhello program
"""

99

KAPITEL 14. WEITERE BEISPIELE 14.4. PYPROJECT.TOML (PYTHON3, CLI)

import sys

__version__ = '1.1.0'

def main(): # needed for console script
print(' ========== Hello Python3 ==========')
print('argv = {}'.format(sys.argv))
print('version = {}'.format(debhello.__version__))
return

if __name__ == "__main__":
sys.exit(main())

Let’s package this with the debmake command. Here, the -b’:py3’ option is used to specify the
generated binary package containing Python3 script and module files.

[base_dir] $ cd debhello-1.1
[debhello-1.1] $ debmake -b':py3' -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.1] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.1", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.1"
I: [base_dir] $ ln -sf debhello-1.1.tar.xz debhello_1.1.orig.tar.xz
I: [base_dir] $ cd debhello-1.1
I: parsing option -b ":py3"
I: binary package=debhello Type=python3 / Arch=all M-A=foreign
W: setuptools build system.
I: build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)
I: ext_type = python3 2 files
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.1] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
...

Let’s inspect the notable template files generated.
debian/rules (Vorlagendatei, v=1.1):

[base_dir] $ cd debhello-1.1
[debhello-1.1] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:

100

KAPITEL 14. WEITERE BEISPIELE 14.4. PYPROJECT.TOML (PYTHON3, CLI)

#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@ --with python3 --buildsystem=pybuild

debmake generated override targets
Too complicated to provide examples here.
#
Check situation of Python on Debian
https://wiki.debian.org/Python
#
https://wiki.debian.org/Python/TransitionToDHPython2
https://wiki.debian.org/Python/Pybuild
https://wiki.debian.org/Python/LibraryStyleGuide
#
If a module package doesn't use distutils or setuptools but uses flit
you need flit plugin. See pybuild(1).
#
Pure PEP-517 based build with "python3 -m build ..." is supported.
#
To update the upstream source to support python3, see
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/PortingToPy3k/BilingualQuickRef

This is essentially the standard debian/rules file with the dh command.
The use of the „--with python3“ option invokes dh_python3 to calculate Python dependencies, add

maintainer scripts to byte compiled files, etc. See dh_python3(1).
The use of the „--buildsystem=pybuild“ option invokes various build systems for requested Python

versions in order to build modules and extensions. See pybuild(1).
debian/control (Vorlagendatei, v=1.1):

[debhello-1.1] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
dh-python,
pybuild-plugin-pyproject,
python3-all,
python3-setuptools,
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello
Section: unknown
Architecture: all
Multi-Arch: foreign
Depends:

101

KAPITEL 14. WEITERE BEISPIELE 14.4. PYPROJECT.TOML (PYTHON3, CLI)

${misc:Depends},
${python3:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.
.
===== This comes from the unmodified template file =====
.
Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch05.en.html#control
.
The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''—b'' "a", "an", or "the".
.
The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.
.
Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Since this is the Python3 package, the debmake command sets „Architecture: all“ and „Multi-Arch:
foreign“. Also, it sets required substvar parameters as „Depends: ${python3:Depends}, ${misc:Depends}“.
These are explained in „Kapitel 6“.

Let’s make this Debian package better as the maintainer.
debian/rules (Betreuerversion, v=1.1):

[base_dir] $ cd debhello-1.1
[debhello-1.1] $ vim debian/rules
... hack, hack, hack, ...
[debhello-1.1] $ cat debian/rules
#!/usr/bin/make -f
export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1
export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control (Betreuerversion, v=1.1):
[debhello-1.1] $ vim debian/control
... hack, hack, hack, ...
[debhello-1.1] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
pybuild-plugin-pyproject,
python3-all,
Standards-Version: 4.6.2
Rules-Requires-Root: no
Vcs-Browser: https://salsa.debian.org/debian/debmake-doc
Vcs-Git: https://salsa.debian.org/debian/debmake-doc.git

102

KAPITEL 14. WEITERE BEISPIELE 14.4. PYPROJECT.TOML (PYTHON3, CLI)

Homepage: https://salsa.debian.org/debian/debmake-doc

Package: debhello
Architecture: all
Depends:
${misc:Depends},
${python3:Depends},
Description: Simple packaging example for debmake
This is an example package to demonstrate Debian packaging using
the debmake command.
.
The generated Debian package uses the dh command offered by the
debhelper package and the dpkg source format `3.0 (quilt)'.

Es gibt eine Reihe von weiteren Vorlagendateien unter dem Verzeichnis debian/. Diese müssen auch
aktualisiert werden.

This debhello command comes with the upstream-provided manpage and desktop file but the upstream
pyproject.toml doesn’t install them. So you need to update debian/install and debian/manpages as
follows:

debian/install (Betreuerversion, v=1.1):

[debhello-1.1] $ vim debian/copyright
... hack, hack, hack, ...
[debhello-1.1] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2024 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

debian/manpages (Betreuerversion, v=1.1):

[debhello-1.1] $ vim debian/install
... hack, hack, hack, ...
[debhello-1.1] $ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps

The rest of the packaging activities are practically the same as the ones in „Abschnitt 14.3“.
Vorlagendateien unter debian/. (v=1.1):

[debhello-1.1] $ rm -f debian/clean debian/dirs debian/links
[debhello-1.1] $ rm -f debian/README.source debian/source/*.ex
[debhello-1.1] $ rm -rf debian/patches
[debhello-1.1] $ tree -F debian

103

KAPITEL 14. WEITERE BEISPIELE 14.5. MAKEFILE (SHELL, GUI)

debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- install
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 15 files

Hier ist die erstellte Abhängigkeitsliste von debhello_1.1-1_all.deb.
The generated dependency list of debhello_1.1-1_all.deb:

[debhello-1.1] $ dpkg -f debhello_1.1-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: python3:any

14.5 Makefile (Shell, GUI)
Here is an example of creating a simple Debian package from a POSIX shell GUI program using the
Makefile as its build system.

This upstream is based on „Abschnitt 14.3“ with enhanced GUI support.
Let’s assume its upstream tarball to be debhello-1.2.tar.xz.
Let’s get the source and make the Debian package.
Download debhello-1.2.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.2.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.2.tar.xz
[base_dir] $ tree
.
+-- debhello-1.2
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-1.2.tar.xz

5 directories, 7 files

Here, the hello has been re-written to use the zenity command to make this a GTK+ GUI program.
hello (v=1.2)

[base_dir] $ cat debhello-1.2/scripts/hello
#!/bin/sh -e
zenity --info --title "hello" --text "Hello from the shell!"

104

KAPITEL 14. WEITERE BEISPIELE 14.5. MAKEFILE (SHELL, GUI)

Here, the desktop file is updated to be Terminal=false as a GUI program.
hello.desktop (v=1.2)

[base_dir] $ cat debhello-1.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=false
Icon=hello.png
Categories=Utility;

Alle anderen Dateien sind identisch zu „Abschnitt 14.3“.
Let’s package this with the debmake command. Here, the „-b’:sh’“ option is used to specify that the

generated binary package is a shell script.

[base_dir] $ cd debhello-1.2
[debhello-1.2] $ debmake -b':sh' -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.2] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.2", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.2"
I: [base_dir] $ ln -sf debhello-1.2.tar.xz debhello_1.2.orig.tar.xz
I: [base_dir] $ cd debhello-1.2
I: parsing option -b ":sh"
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: build_type = make
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: ext_type = md 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.2] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

Let’s inspect the notable template files generated.
debian/control (Vorlagendatei, v=1.2):

[debhello-1.2] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello
Section: unknown
Architecture: all
Multi-Arch: foreign

105

KAPITEL 14. WEITERE BEISPIELE 14.5. MAKEFILE (SHELL, GUI)

Depends:
${misc:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.
.
===== This comes from the unmodified template file =====
.
Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch05.en.html#control
.
The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''—b'' "a", "an", or "the".
.
The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.
.
Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Let’s make this Debian package better as the maintainer.
debian/control (Betreuerversion, v=1.2):

[debhello-1.2] $ vim debian/control
... hack, hack, hack, ...
[debhello-1.2] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
zenity,
${misc:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Please note the manually added zenity dependency.
The debian/rules file is exactly the same as the one in „Abschnitt 14.3“.
Es gibt eine Reihe von weiteren Vorlagendateien unter dem Verzeichnis debian/. Diese müssen auch

aktualisiert werden.
Template files under debian/. (v=1.2):

[debhello-1.2] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-1.2] $ rm -f debian/README.source debian/source/*.ex
[debhello-1.2] $ rm -rf debian/patches

106

KAPITEL 14. WEITERE BEISPIELE 14.6. PYPROJECT.TOML (PYTHON3, GUI)

[debhello-1.2] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 14 files

Die restlichen Paketieraktivitäten sind praktisch die gleichen wie in „Abschnitt 14.3“.
Hier ist die erstellte Abhängigkeitsliste von debhello_1.2-1_all.deb.
The generated dependency list of debhello_1.2-1_all.deb:

[debhello-1.2] $ dpkg -f debhello_1.2-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: zenity

14.6 pyproject.toml (Python3, GUI)
Here is an example of creating a simple Debian package from a Python3 GUI program using pypro-
ject.toml.

Let’s assume this upstream tarball to be debhello-1.3.tar.xz.
Let’s get the source and make the Debian package.
Download debhello-1.3.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.3.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.3.tar.xz
[base_dir] $ tree
.
+-- debhello-1.3
| +-- LICENSE
| +-- MANIFEST.in
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- manpages
| | +-- hello.1
| +-- pyproject.toml
| +-- src
| +-- debhello
| +-- __init__.py
| +-- main.py
+-- debhello-1.3.tar.xz

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.3) — PEP 517 configuration

107

KAPITEL 14. WEITERE BEISPIELE 14.6. PYPROJECT.TOML (PYTHON3, GUI)

[base_dir] $ cat debhello-1.3/pyproject.toml
[build-system]
requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.3.0"
description = "Hello Python (GUI)"
readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"
license = "MIT"
keywords = ["debhello"]
authors = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
maintainers = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",

"Topic :: System :: Archiving :: Packaging",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
Others
"Operating System :: POSIX :: Linux",
"Natural Language :: English",

]
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]
package-dir = {"" = "src"}
packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.3) — for tar-ball.

[base_dir] $ cat debhello-1.3/MANIFEST.in
include data/*
include manpages/*

src/debhello/__init__.py (v=1.3)

[base_dir] $ cat debhello-1.3/src/debhello/__init__.py
"""
debhello program (GUI)
"""

src/debhello/main.py (v=1.3) — command entry point

[base_dir] $ cat debhello-1.3/src/debhello/main.py
#!/usr/bin/python3
from gi.repository import Gtk

__version__ = '1.3.0'

class TopWindow(Gtk.Window):

def __init__(self):

108

KAPITEL 14. WEITERE BEISPIELE 14.6. PYPROJECT.TOML (PYTHON3, GUI)

Gtk.Window.__init__(self)
self.title = "Hello World!"
self.counter = 0
self.border_width = 10
self.set_default_size(400, 100)
self.set_position(Gtk.WindowPosition.CENTER)
self.button = Gtk.Button(label="Click me!")
self.button.connect("clicked", self.on_button_clicked)
self.add(self.button)
self.connect("delete-event", self.on_window_destroy)

def on_window_destroy(self, *args):
Gtk.main_quit(*args)

def on_button_clicked(self, widget):
self.counter += 1
widget.set_label("Hello, World!\nClick count = %i" % self.counter)

def main():
window = TopWindow()
window.show_all()
Gtk.main()

if __name__ == '__main__':
main()

Let’s package this with the debmake command. Here, the -b’:py3’ option is used to specify that the
generated binary package contains Python3 script and module files.

[base_dir] $ cd debhello-1.3
[debhello-1.3] $ debmake -b':py3' -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.3] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.3", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.3"
I: [base_dir] $ ln -sf debhello-1.3.tar.xz debhello_1.3.orig.tar.xz
I: [base_dir] $ cd debhello-1.3
I: parsing option -b ":py3"
I: binary package=debhello Type=python3 / Arch=all M-A=foreign
W: setuptools build system.
I: build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)
I: ext_type = python3 2 files
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.3] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
...

The result is practically the same as in „Abschnitt 14.4“.
Let’s make this Debian package better as the maintainer.
debian/rules (Betreuerversion, v=1.3):

[base_dir] $ cd debhello-1.3
[debhello-1.3] $ vim debian/rules
... hack, hack, hack, ...
[debhello-1.3] $ cat debian/rules
#!/usr/bin/make -f
export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1

109

KAPITEL 14. WEITERE BEISPIELE 14.7. MAKEFILE (PAKET MIT EINEM …

export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control (Betreuerversion, v=1.3):

[debhello-1.3] $ vim debian/control
... hack, hack, hack, ...
[debhello-1.3] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
pybuild-plugin-pyproject,
python3-all,
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
gir1.2-gtk-3.0,
python3-gi,
${misc:Depends},
${python3:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Please note the manually added python3-gi and gir1.2-gtk-3.0 dependencies.
The rest of the packaging activities are practically the same as in <pyproject>>.
Hier ist die erstellte Abhängigkeitsliste von debhello_1.3-1_all.deb.
The generated dependency list of debhello_1.3-1_all.deb:

[debhello-1.3] $ dpkg -f debhello_1.3-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: gir1.2-gtk-3.0, python3-gi, python3:any

14.7 Makefile (Paket mit einem Programm)
Here is an example of creating a simple Debian package from a simple C source program using the
Makefile as its build system.

This is an enhanced upstream source example for „Kapitel 5“. This comes with the manpage, the
desktop file, and the desktop icon. This also links to an external library libm to be a more practical
example.

Let’s assume this upstream tarball to be debhello-1.4.tar.xz.
Diese Art der Quellen soll als Nichtsystemdatei wie folgt instaliert werden:

[base_dir] $ tar -xzmf debhello-1.4.tar.xz
[base_dir] $ cd debhello-1.4
[debhello-1.4] $ make
[debhello-1.4] $ make install

Debian packaging requires changing this „make install“ process to install files into the target system
image location instead of the normal location under /usr/local.

Let’s get the source and make the Debian package.
Download debhello-1.4.tar.xz

110

KAPITEL 14. WEITERE BEISPIELE 14.7. MAKEFILE (PAKET MIT EINEM …

[base_dir] $ wget http://www.example.org/download/debhello-1.4.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.4.tar.xz
[base_dir] $ tree
.
+-- debhello-1.4
| +-- LICENSE
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- src
| +-- config.h
| +-- hello.c
+-- debhello-1.4.tar.xz

5 directories, 9 files

Here, the contents of this source are as follows.
src/hello.c (v=1.4):

[base_dir] $ cat debhello-1.4/src/hello.c
#include "config.h"
#include <math.h>
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
return 0;

}

src/config.h (v=1.4):

[base_dir] $ cat debhello-1.4/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
$(CC) $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ $^ -lm

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop

111

KAPITEL 14. WEITERE BEISPIELE 14.7. MAKEFILE (PAKET MIT EINEM …

-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

Makefile (v=1.4):
[base_dir] $ cat debhello-1.4/src/config.h
#define PACKAGE_AUTHOR "Osamu Aoki"

Please note that this Makefile has the proper install target for the manpage, the desktop file, and
the desktop icon.

Let’s package this with the debmake command.

[base_dir] $ cd debhello-1.4
[debhello-1.4] $ debmake -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.4] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.4", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.4"
I: [base_dir] $ ln -sf debhello-1.4.tar.xz debhello_1.4.orig.tar.xz
I: [base_dir] $ cd debhello-1.4
I: parsing option -b ""
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: build_type = make
I: ext_type = c 2 files
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.4] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

The result is practically the same as in „Abschnitt 5.6“.
Let’s make this Debian package, which is practically the same as in „Abschnitt 5.7“, better as the

maintainer.
If the DEB_BUILD_MAINT_OPTIONS environment variable is not exported in debian/rules, lintian

warns „W: debhello: hardening-no-relro usr/bin/hello“ for the linking of libm.
The debian/control file makes it exactly the same as the one in „Abschnitt 5.7“, since the libm library

is always available as a part of libc6 (Priority: required).
Es gibt eine Reihe von weiteren Vorlagendateien unter dem Verzeichnis debian/. Diese müssen auch

aktualisiert werden.
Vorlagendateien unter debian/. (v=1.4):

[debhello-1.4] $ rm -f debian/clean debian/dirs debian/links
[debhello-1.4] $ rm -f debian/README.source debian/source/*.ex
[debhello-1.4] $ rm -rf debian/patches
[debhello-1.4] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- install
+-- manpages
+-- rules*

112

KAPITEL 14. WEITERE BEISPIELE 14.8. MAKEFILE.IN + CONFIGURE (PAKET …

+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 15 files

The rest of the packaging activities are practically the same as the one in „Abschnitt 5.8“.
Here is the generated dependency list of all binary packages.
Die erstellte Abhängigkeitsliste aller Binärpakete (v=1.4):

[debhello-1.4] $ dpkg -f debhello-dbgsym_1.4-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 1.4-1)
[debhello-1.4] $ dpkg -f debhello_1.4-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.34)

14.8 Makefile.in + configure (Paket mit einem Programm)
Here is an example of creating a simple Debian package from a simple C source program using Make-
file.in and configure as its build system.

This is an enhanced upstream source example for „Abschnitt 14.7“. This also links to an external
library, libm, and this source is configurable using arguments to the configure script, which generates
the Makefile and src/config.h files.

Let’s assume this upstream tarball to be debhello-1.5.tar.xz.
This type of source is meant to be installed as a non-system file, for example, as:

[base_dir] $ tar -xzmf debhello-1.5.tar.xz
[base_dir] $ cd debhello-1.5
[debhello-1.5] $./configure --with-math
[debhello-1.5] $ make
[debhello-1.5] $ make install

Let’s get the source and make the Debian package.
Download debhello-1.5.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.5.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.5.tar.xz
[base_dir] $ tree
.
+-- debhello-1.5
| +-- LICENSE
| +-- Makefile.in
| +-- README.md
| +-- configure
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- src
| +-- hello.c
+-- debhello-1.5.tar.xz

5 directories, 9 files

113

KAPITEL 14. WEITERE BEISPIELE 14.8. MAKEFILE.IN + CONFIGURE (PAKET …

Here, the contents of this source are as follows.
src/hello.c (v=1.5):

[base_dir] $ cat debhello-1.5/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");
#endif

return 0;
}

Makefile.in (v=1.5):
[base_dir] $ cat debhello-1.5/Makefile.in
prefix = @prefix@

all: src/hello

src/hello: src/hello.c
$(CC) @VERBOSE@ \

$(CPPFLAGS) \
$(CFLAGS) \
$(LDFLAGS) \
-o $@ $^ \
@LINKLIB@

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

configure (v=1.5):
[base_dir] $ cat debhello-1.5/configure
#!/bin/sh -e
default values
PREFIX="/usr/local"
VERBOSE=""

114

KAPITEL 14. WEITERE BEISPIELE 14.8. MAKEFILE.IN + CONFIGURE (PAKET …

WITH_MATH="0"
LINKLIB=""
PACKAGE_AUTHOR="John Doe"

parse arguments
while ["${1}" != ""]; do
VAR="${1%=*}" # Drop suffix =*
VAL="${1#*=}" # Drop prefix *=
case "${VAR}" in
--prefix)
PREFIX="${VAL}"
;;

--verbose|-v)
VERBOSE="-v"
;;

--with-math)
WITH_MATH="1"
LINKLIB="-lm"
;;

--author)
PACKAGE_AUTHOR="${VAL}"
;;

*)
echo "W: Unknown argument: ${1}"

esac
shift

done

setup configured Makefile and src/config.h
sed -e "s,@prefix@,${PREFIX}," \

-e "s,@VERBOSE@,${VERBOSE}," \
-e "s,@LINKLIB@,${LINKLIB}," \
<Makefile.in >Makefile

if ["${WITH_MATH}" = 1]; then
echo "#define WITH_MATH" >src/config.h
else
echo "/* not defined: WITH_MATH */" >src/config.h
fi
echo "#define PACKAGE_AUTHOR \"${PACKAGE_AUTHOR}\"" >>src/config.h

Please note that the configure command replaces strings with @… @ in Makefile.in to produce
Makefile and creates src/config.h.

Let’s package this with the debmake command.

[base_dir] $ cd debhello-1.5
[debhello-1.5] $ debmake -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.5] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.5", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.5"
I: [base_dir] $ ln -sf debhello-1.5.tar.xz debhello_1.5.orig.tar.xz
I: [base_dir] $ cd debhello-1.5
I: parsing option -b ""
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: build_type = configure
I: ext_type = c 1 files
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.5] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py

115

KAPITEL 14. WEITERE BEISPIELE 14.8. MAKEFILE.IN + CONFIGURE (PAKET …

I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

Das Ergebnis ist ähnlich zu „Abschnitt 5.6“, aber nicht exakt identisch.
Let’s inspect the notable template files generated.
debian/rules (Vorlagendatei, v=1.5):

[base_dir] $ cd debhello-1.5
[debhello-1.5] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
Package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
Package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1
#
With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@

debmake generated override targets
Multiarch package requires library files to be installed to
/usr/lib/<triplet>/ . If the build system does not support
$(DEB_HOST_MULTIARCH), you may need to override some targets such as
dh_auto_configure or dh_auto_install to use $(DEB_HOST_MULTIARCH) .

Let’s make this Debian package better as the maintainer.
debian/rules (Betreuerversion, v=1.5):

116

KAPITEL 14. WEITERE BEISPIELE 14.9. AUTOTOOLS (PAKET MIT EINEM …

[base_dir] $ cd debhello-1.5
[debhello-1.5] $ vim debian/rules
... hack, hack, hack, ...
[debhello-1.5] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- \

--with-math \
--author="Osamu Aoki"

Es gibt eine Reihe von weiteren Vorlagendateien unter dem Verzeichnis debian/. Diese müssen auch
aktualisiert werden.

The rest of the packaging activities are practically the same as the one in „Abschnitt 5.8“.

14.9 Autotools (Paket mit einem Programm)
Here is an example of creating a simple Debian package from a simple C source program using Autotools
= Autoconf and Automake (Makefile.am and configure.ac) as its build system.

This source usually comes with the upstream auto-generated Makefile.in and configure files, too.
This source can be packaged using these files as in „Abschnitt 14.8“ with the help of the autotools-dev
package.

The better alternative is to regenerate these files using the latest Autoconf and Automake packages
if the upstream provided Makefile.am and configure.ac are compatible with the latest version. This is
advantageous for porting to new CPU architectures, etc. This can be automated by using the „--with
autoreconf“ option for the dh command.

Let’s assume this upstream tarball to be debhello-1.6.tar.xz.
This type of source is meant to be installed as a non-system file, for example, as:

[base_dir] $ tar -xzmf debhello-1.6.tar.xz
[base_dir] $ cd debhello-1.6
[debhello-1.6] $ autoreconf -ivf # optional
[debhello-1.6] $./configure --with-math
[debhello-1.6] $ make
[debhello-1.6] $ make install

Let’s get the source and make the Debian package.
Download debhello-1.6.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.6.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.6.tar.xz
[base_dir] $ tree
.
+-- debhello-1.6
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- Makefile.am
| | +-- hello.1

117

KAPITEL 14. WEITERE BEISPIELE 14.9. AUTOTOOLS (PAKET MIT EINEM …

| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-1.6.tar.xz

5 directories, 11 files

Here, the contents of this source are as follows.
src/hello.c (v=1.6):

[base_dir] $ cat debhello-1.6/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");
#endif

return 0;
}

Makefile.am (v=1.6):
[base_dir] $ cat debhello-1.6/Makefile.am
SUBDIRS = src man
[base_dir] $ cat debhello-1.6/man/Makefile.am
dist_man_MANS = hello.1
[base_dir] $ cat debhello-1.6/src/Makefile.am
bin_PROGRAMS = hello
hello_SOURCES = hello.c

configure.ac (v=1.6):
[base_dir] $ cat debhello-1.6/configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.1],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])
AM_INIT_AUTOMAKE([foreign])
Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
echo "Add --with-math option functionality to ./configure"
AC_ARG_WITH([math],
[AS_HELP_STRING([--with-math],
[compile with math library @<:@default=yes@:>@])],

[],
[with_math="yes"]
)

echo "==== withval := \"$withval\""
echo "==== with_math := \"$with_math\""
m4sh if-else construct
AS_IF([test "x$with_math" != "xno"],[
echo "==== Check include: math.h"
AC_CHECK_HEADER(math.h,[],[
AC_MSG_ERROR([Couldn't find math.h.])

118

KAPITEL 14. WEITERE BEISPIELE 14.9. AUTOTOOLS (PAKET MIT EINEM …

])
echo "==== Check library: libm"
AC_SEARCH_LIBS(atan, [m])
#AC_CHECK_LIB(m, atan)
echo "==== Build with LIBS := \"$LIBS\""
AC_DEFINE(WITH_MATH, [1], [Build with the math library])

],[
echo "==== Skip building with math.h."
AH_TEMPLATE(WITH_MATH, [Build without the math library])

])
Checks for programs.
AC_PROG_CC
AC_CONFIG_FILES([Makefile

man/Makefile
src/Makefile])

AC_OUTPUT

Tipp

Without „foreign“ strictness level specified in AM_INIT_AUTOMAKE() as above,
automake defaults to „gnu“ strictness level requiring several files in the top-level
directory. See „3.2 Strictness“ in the automake document.

Let’s package this with the debmake command.

[base_dir] $ cd debhello-1.6
[debhello-1.6] $ debmake -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.6] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.6", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.6"
I: [base_dir] $ ln -sf debhello-1.6.tar.xz debhello_1.6.orig.tar.xz
I: [base_dir] $ cd debhello-1.6
I: parsing option -b ""
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: build_type = Autotools with autoreconf
I: ext_type = am 3 files
I: ext_type = c 1 files
I: ext_type = 1 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.6] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

The result is similar to „Abschnitt 14.8“ but not exactly the same.
Let’s inspect the notable template files generated.
debian/rules (Vorlagendatei, v=1.6):

[base_dir] $ cd debhello-1.6
[debhello-1.6] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#

119

KAPITEL 14. WEITERE BEISPIELE 14.9. AUTOTOOLS (PAKET MIT EINEM …

Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
Package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
Package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1
#
With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@ --with autoreconf

debmake generated override targets
Set options for ./configure
#CONFIGURE_FLAGS = <options for ./configure>
#overrride_dh_configure:
dh_configure -- $(CONFIGURE_FLAGS)
#
Do not install libtool archive, python .pyc .pyo
#override_dh_install:
dh_install --list-missing -X.la -X.pyc -X.pyo

Let’s make this Debian package better as the maintainer.
debian/rules (Betreuerversion, v=1.6):

[base_dir] $ cd debhello-1.6
[debhello-1.6] $ vim debian/rules
... hack, hack, hack, ...
[debhello-1.6] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:

120

KAPITEL 14. WEITERE BEISPIELE 14.10. CMAKE (PAKET MIT EINEM PROGRAMM)

dh $@ --with autoreconf

override_dh_auto_configure:
dh_auto_configure -- \

--with-math

Es gibt eine Reihe von weiteren Vorlagendateien unter dem Verzeichnis debian/. Diese müssen auch
aktualisiert werden.

The rest of the packaging activities are practically the same as the one in „Abschnitt 5.8“.

14.10 CMake (Paket mit einem Programm)
Here is an example of creating a simple Debian package from a simple C source program using CMake
(CMakeLists.txt and some files such as config.h.in) as its build system.

The cmake command generates the Makefile file based on the CMakeLists.txt file and its -D opti-
on. It also configures the file as specified in its configure_file(…) by replacing strings with @… @ and
changing the #cmakedefine … line.

Let’s assume this upstream tarball to be debhello-1.7.tar.xz.
This type of source is meant to be installed as a non-system file, for example, as:

[base_dir] $ tar -xzmf debhello-1.7.tar.xz
[base_dir] $ cd debhello-1.7
[debhello-1.7] $ mkdir obj-x86_64-linux-gnu # for out-of-tree build
[debhello-1.7] $ cd obj-x86_64-linux-gnu
[debhello-1.7] $ cmake ..
[debhello-1.7] $ make
[debhello-1.7] $ make install

Let’s get the source and make the Debian package.
Download debhello-1.7.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.7.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.7.tar.xz
[base_dir] $ tree
.
+-- debhello-1.7
| +-- CMakeLists.txt
| +-- LICENSE
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- CMakeLists.txt
| | +-- hello.1
| +-- src
| +-- CMakeLists.txt
| +-- config.h.in
| +-- hello.c
+-- debhello-1.7.tar.xz

5 directories, 11 files

Here, the contents of this source are as follows.
src/hello.c (v=1.7):

[base_dir] $ cat debhello-1.7/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>

121

KAPITEL 14. WEITERE BEISPIELE 14.10. CMAKE (PAKET MIT EINEM PROGRAMM)

int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");
#endif

return 0;
}

src/config.h.in (v=1.7):
[base_dir] $ cat debhello-1.7/src/config.h.in
/* name of the package author */
#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"
/* math library support */
#cmakedefine WITH_MATH

CMakeLists.txt (v=1.7):
[base_dir] $ cat debhello-1.7/CMakeLists.txt
cmake_minimum_required(VERSION 3.31)
project(debhello)
set(PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(src)
add_subdirectory(man)
[base_dir] $ cat debhello-1.7/man/CMakeLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/man1

)
[base_dir] $ cat debhello-1.7/src/CMakeLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Interactively define WITH_MATH
option(WITH_MATH "Build with math support" OFF)
#variable_watch(WITH_MATH)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"

)
include_directories("${CMAKE_CURRENT_BINARY_DIR}")
add_executable(hello hello.c)
install(TARGETS hello
RUNTIME DESTINATION bin

)

Let’s package this with the debmake command.

[base_dir] $ cd debhello-1.7
[debhello-1.7] $ debmake -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.7] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.7", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.7"
I: [base_dir] $ ln -sf debhello-1.7.tar.xz debhello_1.7.orig.tar.xz
I: [base_dir] $ cd debhello-1.7
I: parsing option -b ""
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: build_type = Cmake
I: ext_type = c 2 files
I: ext_type = 1 1 files

122

KAPITEL 14. WEITERE BEISPIELE 14.10. CMAKE (PAKET MIT EINEM PROGRAMM)

I: ext_type = desktop 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.7] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

The result is similar to „Abschnitt 14.8“ but not exactly the same.
Let’s inspect the notable template files generated.
debian/rules (Vorlagendatei, v=1.7):

[base_dir] $ cd debhello-1.7
[debhello-1.7] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
Package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
Package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1
#
With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@

debmake generated override targets

123

KAPITEL 14. WEITERE BEISPIELE 14.10. CMAKE (PAKET MIT EINEM PROGRAMM)

#override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"
#
You may need to patch CMakeLists.txt to set the library install path to be:...
#-install(TARGETS <sharedlibname> LIBRARY DESTINATION lib)
#+install(TARGETS <sharedlibname> LIBRARY DESTINATION lib/${CMAKE_LIBRARY_ARC...

Multiarch package requires library files to be installed to
/usr/lib/<triplet>/ . If the build system does not support
$(DEB_HOST_MULTIARCH), you may need to override some targets such as
dh_auto_configure or dh_auto_install to use $(DEB_HOST_MULTIARCH) .

debian/control (template file, v=1.7):
[debhello-1.7] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
cmake,
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello
Section: unknown
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.
.
===== This comes from the unmodified template file =====
.
Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch05.en.html#control
.
The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''—b'' "a", "an", or "the".
.
The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.
.
Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Let’s make this Debian package better as the maintainer.

124

KAPITEL 14. WEITERE BEISPIELE 14.11. AUTOTOOLS (PAKET MIT MEHREREN …

debian/rules (Betreuerversion, v=1.7):

[base_dir] $ cd debhello-1.7
[debhello-1.7] $ vim debian/rules
... hack, hack, hack, ...
[debhello-1.7] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- -DWITH-MATH=1

debian/control (Betreuerversion, v=1.7):

[debhello-1.7] $ vim debian/control
... hack, hack, hack, ...
[debhello-1.7] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
cmake,
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Es gibt eine Reihe von weiteren Vorlagendateien unter dem Verzeichnis debian/. Diese müssen auch
aktualisiert werden.

The rest of the packaging activities are practically the same as the one in „Abschnitt 14.8“.

14.11 Autotools (Paket mit mehreren Programmen)
Here is an example of creating a set of Debian binary packages including the executable package, the
shared library package, the development file package, and the debug symbol package from a simple C
source program using Autotools (Autoconf and Automake, which use Makefile.am and configure.ac as
their input files) as its build system.

Let’s package this in a similar way to „Abschnitt 14.9“.
Let’s assume this upstream tarball to be debhello-2.0.tar.xz.
This type of source is meant to be installed as a non-system file, for example, as:

[base_dir] $ tar -xzmf debhello-2.0.tar.xz
[base_dir] $ cd debhello-2.0
[debhello-2.0] $ autoreconf -ivf # optional
[debhello-2.0] $./configure --with-math
[debhello-2.0] $ make

125

KAPITEL 14. WEITERE BEISPIELE 14.11. AUTOTOOLS (PAKET MIT MEHREREN …

[debhello-2.0] $ make install

Let’s get the source and make the Debian package.
Download debhello-2.0.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-2.0.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-2.0.tar.xz
[base_dir] $ tree
.
+-- debhello-2.0
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- Makefile.am
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-2.0.tar.xz

6 directories, 14 files

Here, the contents of this source are as follows.
src/hello.c (v=2.0):

[base_dir] $ cat debhello-2.0/src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
sharedlib();
return 0;

}

lib/sharedlib.h und lib/sharedlib.c (v=1.6):

[base_dir] $ cat debhello-2.0/lib/sharedlib.h
int sharedlib();
[base_dir] $ cat debhello-2.0/lib/sharedlib.c
#include <stdio.h>
int
sharedlib()
{

printf("This is a shared library!\n");
return 0;

}

Makefile.am (v=2.0):

[base_dir] $ cat debhello-2.0/Makefile.am
recursively process `Makefile.am` in SUBDIRS
SUBDIRS = lib src man
[base_dir] $ cat debhello-2.0/man/Makefile.am

126

KAPITEL 14. WEITERE BEISPIELE 14.11. AUTOTOOLS (PAKET MIT MEHREREN …

manpages (distributed in the source package)
dist_man_MANS = hello.1
[base_dir] $ cat debhello-2.0/lib/Makefile.am
libtool librares to be produced
lib_LTLIBRARIES = libsharedlib.la

source files used for lib_LTLIBRARIES
libsharedlib_la_SOURCES = sharedlib.c

C pre-processor flags used for lib_LTLIBRARIES
#libsharedlib_la_CPPFLAGS =

Headers files to be installed in <prefix>/include
include_HEADERS = sharedlib.h

Versioning Libtool Libraries with version triplets
libsharedlib_la_LDFLAGS = -version-info 1:0:0
[base_dir] $ cat debhello-2.0/src/Makefile.am
program executables to be produced
bin_PROGRAMS = hello

source files used for bin_PROGRAMS
hello_SOURCES = hello.c

C pre-processor flags used for bin_PROGRAMS
AM_CPPFLAGS = -I$(srcdir) -I$(top_srcdir)/lib

Extra options for the linker for hello
hello_LDFLAGS =

Libraries the `hello` binary to be linked
hello_LDADD = $(top_srcdir)/lib/libsharedlib.la

configure.ac (v=2.0):
[base_dir] $ cat debhello-2.0/configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.2],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

AM_INIT_AUTOMAKE([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the libltdl sources in the libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltdl])

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.
AC_PROG_CC

only for the recursive case
AC_CONFIG_FILES([Makefile

127

KAPITEL 14. WEITERE BEISPIELE 14.11. AUTOTOOLS (PAKET MIT MEHREREN …

lib/Makefile
man/Makefile
src/Makefile])

AC_OUTPUT

Let’s use the debmake command to package this into multiple packages:

• debhello: type = bin

• libsharedlib1: type = lib

• libsharedlib-dev: type = dev

Here, we use the -b’libsharedlib1,libsharedlib-dev’ option to specify the additional binary packages
to be generated.

[base_dir] $ cd debhello-2.0
[debhello-2.0] $ debmake -b',libsharedlib1,libsharedlib-dev' -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-2.0] $ cd ..
I: Non-native Debian package pkg="debhello", ver="2.0", rev="1" method="dir_d...
I: already in the package-version form: "debhello-2.0"
I: [base_dir] $ ln -sf debhello-2.0.tar.xz debhello_2.0.orig.tar.xz
I: [base_dir] $ cd debhello-2.0
I: parsing option -b ",libsharedlib1,libsharedlib-dev"
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: binary package=libsharedlib1 Type=lib / Arch=any M-A=same
I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same
I: build_type = Autotools with autoreconf
I: ext_type = am 4 files
I: ext_type = c 3 files
I: ext_type = 1 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-2.0] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
...

The result is similar to „Abschnitt 14.8“ but with more template files.
Let’s inspect the notable template files generated.
debian/rules (Vorlagendatei, v=2.0):

[base_dir] $ cd debhello-2.0
[debhello-2.0] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
Package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
Package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1
#

128

KAPITEL 14. WEITERE BEISPIELE 14.11. AUTOTOOLS (PAKET MIT MEHREREN …

With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@ --with autoreconf

debmake generated override targets
Set options for ./configure
#CONFIGURE_FLAGS = <options for ./configure>
#overrride_dh_configure:
dh_configure -- $(CONFIGURE_FLAGS)
#
Do not install libtool archive, python .pyc .pyo
#override_dh_install:
dh_install --list-missing -X.la -X.pyc -X.pyo

Let’s make this Debian package better as the maintainer.
debian/rules (Betreuerversion, v=2.0):

[base_dir] $ cd debhello-2.0
[debhello-2.0] $ vim debian/rules
... hack, hack, hack, ...
[debhello-2.0] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@ --with autoreconf

override_dh_missing:
dh_missing -X.la

debian/control (Betreuerversion, v=2.0):

[debhello-2.0] $ vim debian/control
... hack, hack, hack, ...
[debhello-2.0] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>

129

KAPITEL 14. WEITERE BEISPIELE 14.11. AUTOTOOLS (PAKET MIT MEHREREN …

Build-Depends:
debhelper-compat (= 13),
dh-autoreconf,
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the compiled binary executable.
.
This Debian binary package is an example package.
(This is an example only)

Package: libsharedlib1
Section: libs
Architecture: any
Multi-Arch: same
Pre-Depends:
${misc:Pre-Depends},
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev
Section: libdevel
Architecture: any
Multi-Arch: same
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install (Betreuerversion, v=2.0):
[debhello-2.0] $ vim debian/copyright
... hack, hack, hack, ...
[debhello-2.0] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.

130

KAPITEL 14. WEITERE BEISPIELE 14.11. AUTOTOOLS (PAKET MIT MEHREREN …

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Since this upstream source creates the proper auto-generated Makefile, there is no need to create
debian/install and debian/manpages files.

Es gibt eine Reihe von weiteren Vorlagendateien unter dem Verzeichnis debian/. Diese müssen auch
aktualisiert werden.

Vorlagendateien unter debian/. (v=2.0):

[debhello-2.0] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-2.0] $ rm -f debian/README.source debian/source/*.ex
[debhello-2.0] $ rm -rf debian/patches
[debhello-2.0] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- debhello.install
+-- docs
+-- examples
+-- gbp.conf
+-- libsharedlib-dev.install
+-- libsharedlib1.install
+-- libsharedlib1.symbols
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 18 files

The rest of the packaging activities are practically the same as the one in „Abschnitt 14.8“.
Here are the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=2.0):

[debhello-2.0] $ dpkg -f debhello-dbgsym_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.0-1)
[debhello-2.0] $ dpkg -f debhello_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1), libc6 (>= 2.34)
[debhello-2.0] $ dpkg -f libsharedlib-dev_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1)
[debhello-2.0] $ dpkg -f libsharedlib1-dbgsym_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1)
[debhello-2.0] $ dpkg -f libsharedlib1_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.2.5)

131

KAPITEL 14. WEITERE BEISPIELE 14.12. CMAKE (MULTI-BINARY PACKAGE)

14.12 CMake (multi-binary package)
This example demonstrates creating a set of Debian binary packages including the executable package,
the shared library package, the development file package, and the debug symbol package from a simple
C source program using CMake (CMakeLists.txt and files such as config.h.in) as its build system.

Let’s assume this upstream tarball to be debhello-2.1.tar.xz.
This type of source is meant to be installed as a non-system file, for example, as:

[base_dir] $ tar -xzmf debhello-2.1.tar.xz
[base_dir] $ cd debhello-2.1
[debhello-2.1] $ mkdir obj-x86_64-linux-gnu
[debhello-2.1] $ cd obj-x86_64-linux-gnu
[debhello-2.1] $ cmake ..
[debhello-2.1] $ make
[debhello-2.1] $ make install

Let’s get the source and make the Debian package.
Download debhello-2.1.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-2.1.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-2.1.tar.xz
[base_dir] $ tree
.
+-- debhello-2.1
| +-- CMakeLists.txt
| +-- LICENSE
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- CMakeLists.txt
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- CMakeLists.txt
| | +-- hello.1
| +-- src
| +-- CMakeLists.txt
| +-- config.h.in
| +-- hello.c
+-- debhello-2.1.tar.xz

6 directories, 14 files

Here, the contents of this source are as follows.
src/hello.c (v=2.1):

[base_dir] $ cat debhello-2.1/src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
sharedlib();
return 0;

}

src/config.h.in (v=2.1):
[base_dir] $ cat debhello-2.1/src/config.h.in
/* name of the package author */
#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"

132

KAPITEL 14. WEITERE BEISPIELE 14.12. CMAKE (MULTI-BINARY PACKAGE)

lib/sharedlib.c und lib/sharedlib.h (v=2.1):
[base_dir] $ cat debhello-2.1/lib/sharedlib.h
int sharedlib();
[base_dir] $ cat debhello-2.1/lib/sharedlib.c
#include <stdio.h>
int
sharedlib()
{

printf("This is a shared library!\n");
return 0;

}

CMakeLists.txt (v=2.1):
[base_dir] $ cat debhello-2.1/CMakeLists.txt
cmake_minimum_required(VERSION 3.31)
project(debhello)
set(PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(lib)
add_subdirectory(src)
add_subdirectory(man)
[base_dir] $ cat debhello-2.1/man/CMakeLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/man1

)
[base_dir] $ cat debhello-2.1/src/CMakeLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"
)

include_directories("${CMAKE_CURRENT_BINARY_DIR}")
include_directories("${CMAKE_SOURCE_DIR}/lib")

add_executable(hello hello.c)
target_link_libraries(hello sharedlib)
install(TARGETS hello
RUNTIME DESTINATION bin

)

Let’s package this with the debmake command.

[base_dir] $ cd debhello-2.1
[debhello-2.1] $ debmake -b',libsharedlib1,libsharedlib-dev' -x1
I: debmake (version: 5.1.0)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-2.1] $ cd ..
I: Non-native Debian package pkg="debhello", ver="2.1", rev="1" method="dir_d...
I: already in the package-version form: "debhello-2.1"
I: [base_dir] $ ln -sf debhello-2.1.tar.xz debhello_2.1.orig.tar.xz
I: [base_dir] $ cd debhello-2.1
I: parsing option -b ",libsharedlib1,libsharedlib-dev"
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: binary package=libsharedlib1 Type=lib / Arch=any M-A=same
I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same
I: build_type = Cmake
I: ext_type = c 4 files
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-2.1] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.

133

KAPITEL 14. WEITERE BEISPIELE 14.12. CMAKE (MULTI-BINARY PACKAGE)

I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
...

The result is similar to „Abschnitt 14.8“ but not exactly the same.
Let’s inspect the notable template files generated.
debian/rules (Vorlagendatei, v=2.1):

[base_dir] $ cd debhello-2.1
[debhello-2.1] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
Package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
Package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1
#
With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@

debmake generated override targets
#override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"
#
You may need to patch CMakeLists.txt to set the library install path to be:...
#-install(TARGETS <sharedlibname> LIBRARY DESTINATION lib)

134

KAPITEL 14. WEITERE BEISPIELE 14.12. CMAKE (MULTI-BINARY PACKAGE)

#+install(TARGETS <sharedlibname> LIBRARY DESTINATION lib/${CMAKE_LIBRARY_ARC...

Multiarch package requires library files to be installed to
/usr/lib/<triplet>/ . If the build system does not support
$(DEB_HOST_MULTIARCH), you may need to override some targets such as
dh_auto_configure or dh_auto_install to use $(DEB_HOST_MULTIARCH) .

Let’s make this Debian package better as the maintainer.
debian/rules (Betreuerversion, v=2.1):

[base_dir] $ cd debhello-2.1
[debhello-2.1] $ vim debian/rules
... hack, hack, hack, ...
[debhello-2.1] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed
DEB_HOST_MULTIARCH ?= $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- \

-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_HOST_MULTIARCH)"

debian/control (Betreuerversion, v=2.1):

[debhello-2.1] $ vim debian/control
... hack, hack, hack, ...
[debhello-2.1] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
cmake,
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the compiled binary executable.
.
This Debian binary package is an example package.
(This is an example only)

Package: libsharedlib1
Section: libs
Architecture: any
Multi-Arch: same
Pre-Depends:
${misc:Pre-Depends},
Depends:
${misc:Depends},

135

KAPITEL 14. WEITERE BEISPIELE 14.12. CMAKE (MULTI-BINARY PACKAGE)

${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev
Section: libdevel
Architecture: any
Multi-Arch: same
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install (Betreuerversion, v=2.1):

[debhello-2.1] $ vim debian/copyright
... hack, hack, hack, ...
[debhello-2.1] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The upstream CMakeLists.txt file needs to be patched to handle the multiarch path correctly.
debian/patches/* (Betreuerversion, v=2.1):

... hack, hack, hack, ...
[debhello-2.1] $ cat debian/libsharedlib1.symbols
libsharedlib.so.1 libsharedlib1 #MINVER#
sharedlib@Base 2.1

Since this upstream source creates the proper auto-generated Makefile, there is no need to create
debian/install and debian/manpages files.

Es gibt eine Reihe von weiteren Vorlagendateien unter dem Verzeichnis debian/. Diese müssen auch
aktualisiert werden.

Vorlagendateien unter debian/. (v=2.1):

[debhello-2.1] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-2.1] $ rm -f debian/README.source debian/source/*.ex
[debhello-2.1] $ tree -F debian
debian/
+-- README.Debian
+-- changelog

136

KAPITEL 14. WEITERE BEISPIELE 14.13. INTERNATIONALIZATION

+-- control
+-- copyright
+-- debhello.install
+-- docs
+-- examples
+-- gbp.conf
+-- libsharedlib-dev.install
+-- libsharedlib1.install
+-- libsharedlib1.symbols
+-- manpages
+-- patches/
| +-- 000-cmake-multiarch.patch
| +-- series
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

5 directories, 20 files

The rest of the packaging activities are practically the same as the one in „Abschnitt 14.8“.
Here are the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=2.1):

[debhello-2.1] $ dpkg -f debhello-dbgsym_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.1-1)
[debhello-2.1] $ dpkg -f debhello_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1), libc6 (>= 2.34)
[debhello-2.1] $ dpkg -f libsharedlib-dev_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1)
[debhello-2.1] $ dpkg -f libsharedlib1-dbgsym_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1)
[debhello-2.1] $ dpkg -f libsharedlib1_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.2.5)

14.13 Internationalization
Here is an example of updating the simple upstream C source debhello-2.0.tar.xz presented in „Ab-
schnitt 14.11“ for internationalization (i18n) and creating the updated upstream C source debhello-
2.0.tar.xz.

In the real situation, the package should already be internationalized. So this example is educational
for you to understand how this internationalization is implemented.

Tipp

The routine maintainer activity for the i18n is simply to add translation po files
reported to you via the Bug Tracking System (BTS) to the po/ directory and to
update the language list in the po/LINGUAS file.

Let’s get the source and make the Debian package.

137

KAPITEL 14. WEITERE BEISPIELE 14.13. INTERNATIONALIZATION

Download debhello-2.0.tar.xz (i18n)

[base_dir] $ wget http://www.example.org/download/debhello-2.0.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-2.0.tar.xz
[base_dir] $ tree
.
+-- debhello-2.0
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- Makefile.am
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-2.0.tar.xz

6 directories, 14 files

Internationalize this source tree with the gettextize command and remove files auto-generated by
Autotools.

run gettextize (i18n):

[base_dir] $ cd debhello-2.0
$ gettextize
Creating po/ subdirectory
Creating build-aux/ subdirectory
Copying file ABOUT-NLS
Copying file build-aux/config.rpath
Not copying intl/ directory.
Copying file po/Makefile.in.in
Copying file po/Makevars.template
Copying file po/Rules-quot
Copying file po/boldquot.sed
Copying file po/en@boldquot.header
Copying file po/en@quot.header
Copying file po/insert-header.sin
Copying file po/quot.sed
Copying file po/remove-potcdate.sin
Creating initial po/POTFILES.in
Creating po/ChangeLog
Creating directory m4
Copying file m4/gettext.m4
Copying file m4/iconv.m4
Copying file m4/lib-ld.m4
Copying file m4/lib-link.m4
Copying file m4/lib-prefix.m4
Copying file m4/nls.m4
Copying file m4/po.m4
Copying file m4/progtest.m4
Creating m4/ChangeLog
Updating Makefile.am (backup is in Makefile.am~)
Updating configure.ac (backup is in configure.ac~)
Creating ChangeLog

138

KAPITEL 14. WEITERE BEISPIELE 14.13. INTERNATIONALIZATION

Please use AM_GNU_GETTEXT([external]) in order to cause autoconfiguration
to look for an external libintl.

Please create po/Makevars from the template in po/Makevars.template.
You can then remove po/Makevars.template.

Please fill po/POTFILES.in as described in the documentation.

Please run 'aclocal' to regenerate the aclocal.m4 file.
You need aclocal from GNU automake 1.9 (or newer) to do this.
Then run 'autoconf' to regenerate the configure file.

You will also need config.guess and config.sub, which you can get from the CV...
of the 'config' project at http://savannah.gnu.org/. The commands to fetch th...
are
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...

You might also want to copy the convenience header file gettext.h
from the /usr/share/gettext directory into your package.
It is a wrapper around <libintl.h> that implements the configure --disable-nl...
option.

Press Return to acknowledge the previous 6 paragraphs.
[debhello-2.0] $ rm -rf m4 build-aux *~

Let’s check generated files under the po/ directory.
Dateien in po (i18n):

[debhello-2.0] $ ls -l po
total 60
-rw-rw-r-- 1 osamu osamu 494 Jan 30 14:33 ChangeLog
-rw-rw-r-- 1 osamu osamu 17577 Jan 30 14:33 Makefile.in.in
-rw-rw-r-- 1 osamu osamu 3376 Jan 30 14:33 Makevars.template
-rw-rw-r-- 1 osamu osamu 59 Jan 30 14:33 POTFILES.in
-rw-rw-r-- 1 osamu osamu 2203 Jan 30 14:33 Rules-quot
-rw-rw-r-- 1 osamu osamu 217 Jan 30 14:33 boldquot.sed
-rw-rw-r-- 1 osamu osamu 1337 Jan 30 14:33 en@boldquot.header
-rw-rw-r-- 1 osamu osamu 1203 Jan 30 14:33 en@quot.header
-rw-rw-r-- 1 osamu osamu 672 Jan 30 14:33 insert-header.sin
-rw-rw-r-- 1 osamu osamu 153 Jan 30 14:33 quot.sed
-rw-rw-r-- 1 osamu osamu 432 Jan 30 14:33 remove-potcdate.sin

Let’s update the configure.ac by adding „AM_GNU_GETTEXT([external])“, etc..
configure.ac (i18n):

[debhello-2.0] $ vim configure.ac
... hack, hack, hack, ...
[debhello-2.0] $ cat configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.2],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

AM_INIT_AUTOMAKE([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the libltdl sources in the libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltdl])

139

KAPITEL 14. WEITERE BEISPIELE 14.13. INTERNATIONALIZATION

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.
AC_PROG_CC

desktop file support required
AM_GNU_GETTEXT_VERSION([0.19.3])
AM_GNU_GETTEXT([external])

only for the recursive case
AC_CONFIG_FILES([Makefile

po/Makefile.in
lib/Makefile
man/Makefile
src/Makefile])

AC_OUTPUT

Let’s create the po/Makevars file from the po/Makevars.template file.
po/Makevars (i18n):

... hack, hack, hack, ...
[debhello-2.0] $ diff -u po/Makevars.template po/Makevars
--- po/Makevars.template 2026-01-30 14:33:08.244318865 +0000
+++ po/Makevars 2026-01-30 14:33:08.323164000 +0000
@@ -18,14 +18,14 @@
or entity, or to disclaim their copyright. The empty string stands for
the public domain; in this case the translators are expected to disclaim
their copyright.
-COPYRIGHT_HOLDER = Free Software Foundation, Inc.
+COPYRIGHT_HOLDER = Osamu Aoki <osamu@debian.org>

This tells whether or not to prepend "GNU " prefix to the package
name that gets inserted into the header of the $(DOMAIN).pot file.
Possible values are "yes", "no", or empty. If it is empty, try to
detect it automatically by scanning the files in $(top_srcdir) for
"GNU packagename" string.
-PACKAGE_GNU =
+PACKAGE_GNU = no

This is the email address or URL to which the translators shall report
bugs in the untranslated strings:
[debhello-2.0] $ rm po/Makevars.template

Let’s update C sources for the i18n version by wrapping strings with _(…).
src/hello.c (I18n):

... hack, hack, hack, ...
[debhello-2.0] $ cat src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
#include <libintl.h>
#define _(string) gettext (string)
int
main()
{

printf(_("Hello, I am " PACKAGE_AUTHOR "!\n"));
sharedlib();
return 0;

140

KAPITEL 14. WEITERE BEISPIELE 14.13. INTERNATIONALIZATION

}

lib/sharedlib.c (I18n):

... hack, hack, hack, ...
[debhello-2.0] $ cat lib/sharedlib.c
#include <stdio.h>
#include <libintl.h>
#define _(string) gettext (string)
int
sharedlib()
{

printf(_("This is a shared library!\n"));
return 0;

}

The new gettext (v=0.19) can handle the i18n version of the desktop file directly.
data/hello.desktop.in (I18n):

[debhello-2.0] $ fgrep -v '[ja]=' data/hello.desktop > data/hello.desktop.in
[debhello-2.0] $ rm data/hello.desktop
[debhello-2.0] $ cat data/hello.desktop.in
[Desktop Entry]
Name=Hello
Comment=Greetings
Type=Application
Keywords=hello
Exec=hello
Terminal=true
Icon=hello.png
Categories=Utility;

Let’s list the input files to extract translatable strings in po/POTFILES.in.
po/POTFILES.in (I18n):

... hack, hack, hack, ...
[debhello-2.0] $ cat po/POTFILES.in
src/hello.c
lib/sharedlib.c
data/hello.desktop.in

Here is the updated root Makefile.am with po added to the SUBDIRS environment variable.
Makefile.am (I18n):

[debhello-2.0] $ cat Makefile.am
recursively process `Makefile.am` in SUBDIRS
SUBDIRS = po lib src man

ACLOCAL_AMFLAGS = -I m4

EXTRA_DIST = build-aux/config.rpath m4/ChangeLog

Let’s make a translation template file, debhello.pot.
po/debhello.pot (I18n):

[debhello-2.0] $ xgettext -f po/POTFILES.in -d debhello -o po/debhello.pot -k...
[debhello-2.0] $ cat po/debhello.pot
SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"

141

KAPITEL 14. WEITERE BEISPIELE 14.13. INTERNATIONALIZATION

"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2026-01-30 14:33+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:9
#, c-format
msgid "Hello, I am "
msgstr ""

#: lib/sharedlib.c:7
#, c-format
msgid "This is a shared library!\n"
msgstr ""

#: data/hello.desktop.in:2
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:3
msgid "Greetings"
msgstr ""

#: data/hello.desktop.in:5
msgid "hello"
msgstr ""

Lassen Sie uns eine französische Übersetzung hinzufügen.
po/LINGUAS und po/fr.po (I18n):

[debhello-2.0] $ echo 'fr' > po/LINGUAS
[debhello-2.0] $ cp po/debhello.pot po/fr.po
[debhello-2.0] $ vim po/fr.po
... hack, hack, hack, ...
[debhello-2.0] $ cat po/fr.po
SOME DESCRIPTIVE TITLE.
This file is put in the public domain.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
msgid ""
msgstr ""
"Project-Id-Version: debhello 2.2\n"
"Report-Msgid-Bugs-To: foo@example.org\n"
"POT-Creation-Date: 2015-03-01 20:22+0900\n"
"PO-Revision-Date: 2015-02-21 23:18+0900\n"
"Last-Translator: Osamu Aoki <osamu@debian.org>\n"
"Language-Team: French <LL@li.org>\n"
"Language: ja\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:34
#, c-format
msgid "Hello, my name is %s!\n"
msgstr "Bonjour, je m'appelle %s!\n"

#: lib/sharedlib.c:29
#, c-format
msgid "This is a shared library!\n"

142

KAPITEL 14. WEITERE BEISPIELE 14.14. DETAILS

msgstr "Ceci est une bibliothèque partagée!\n"

#: data/hello.desktop.in:3
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:4
msgid "Greetings"
msgstr "Salutations"

#: data/hello.desktop.in:6
msgid "hello"
msgstr ""

#: data/hello.desktop.in:9
msgid "hello.png"
msgstr ""

The packaging activities are practically the same as the one in „Abschnitt 14.11“.
You can find more i18n examples by following „Abschnitt 14.14“.

14.14 Details
You can obtain detailed information about the examples presented and their variants as follows:

Wie Sie die Details erhalten

[base_dir] $ apt-get source debmake-doc
[base_dir] $ cd debmake-doc*
[debmake-doc-*] $ view examples/README.md

Follow the exact instruction in examples/README.md.

[debmake-doc-*] $ cd examples
[examples] $ make

Now, each directory named as examples/debhello-?.?_build-? contains the Debian packaging ex-
ample.

• emulated console command line activity log: the .log file

• emulated console command line activity log (short): the .slog file

• snapshot source tree image after the debmake command: the debmake directory

• snapshot source tree image after proper packaging: the package directory

• snapshot source tree image after the debuild command: the test directory

Notable examples include:

• POSIX shell script with Makefile and i18n support (v=3.0)

• C source with Makefile.in + configure and i18n support (v=3.2)

• C source with Autotools and i18n support (v=3.3)

• C source with CMake and i18n support (v=3.4)

143

Kapitel 15

debmake(1)-Handbuchseite

15.1 BEZEICHNUNG
debmake - Programm zur Erstellung eines Debian-Quellpakets

15.2 ÜBERSICHT
debmake [-h] [-n] [-p package] [-u version] [-r revision] [-z extension] [-b ”binarypackage[:type], …]” [-e
foo@example.org] [-f ”firstname lastname”] [-i [debuild|sbuild|dgit sbuild|gbp buildpackage|dpkg-
buildpackage| …]] [-m] [-q] [-v] [-V] [-w ”addon, … ”] [-x [01234]] [-y] [-B] [URL]

15.3 BESCHREIBUNG
debmake helps to build the Debian package from the upstream source.

Normally, this is done as follows:

• The upstream source is obtained as a tarball from a remote web site or a cloned work tree using
„git clone“.

– For a tarball, it is expanded to many files in the source directory.
– For a cloned work tree, it is used as the source directory.

• debmake is typically invoked in the source directory without any argument.

– The source directory is copied to ../package-version/ directory.
– If ../package_version.orig.tar.xz is missing, it is generated.
– The current directory is moved to ../package-version/.
– Template files are generated in the ../package-version/debian/ directory

• Files in the ../package-version/debian/ directory should be manually adjusted.

• dpkg-buildpackage (usually from its wrapper debuild, sbuild, …) is invoked in the ../package-
version/ directory to make Debian source and binary packages.

Also, debmake can be invoked with an argument. This argument can be URL for a tarball hosted on
a remote web site or for a source code accessed by „git clone“; or local PATH to the tarball or the source
code.

Arguments to -b, -f, and -w options need to be quoted to protect them from the shell.
Other tools also offer ways to obtain the upstream tarball and creating required symlink to build a

Debian package depending on your workflow. For example, origtargz, mk-origtargz, git-deborig, and
pristine-tar.

144

KAPITEL 15. DEBMAKE(1)-HANDBUCHSEITE 15.4. POSITIONAL ARGUMENTS

15.4 Positional arguments

URL aquire the source tree from the tarball, the git repository or the source tree at this URL (or PATH)
(if missing, the source tree uses the current directory)

15.5 Options

-h, --help show this help message and exit

-n, --native make a native source package without .orig.tar.xz

-p, --package package set the Debian package name

-u, --upstreamversion version set the upstream package version

-r, --revision revision set the Debian package revision

-z, --tarz extension set the tarball compression type, extension=(tar.xz|tar.gz|tar.bz2) (alias: z, b, x)

-b, --binaryspec ”binarypackage[:type], … ” set the binary package specs by a comma separated list
of binarypackage:type pairs. Here, binarypackage is the binary package name, and the optional
type is chosen from the following type values:

• bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-
string)

• data: Data (fonts, graphics, …) package (all, foreign) (alias: da)
• dev: Library development package (any, same) (alias: de)
• doc: Documentation package (all, foreign) (alias: do)
• lib: Library package (any, same) (alias: l)
• perl: Perl script package (all, foreign) (alias: pl)
• python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
• ruby: Ruby script package (all, foreign) (alias: rb)
• nodejs: Node.js based JavaScript package (all, foreign) (alias: js)
• script: Shell and other interpreted language script package (all, foreign) (alias: sh)

The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch
stanza values set in the debian/control file. In many cases, the debmake command makes good
guesses for type from binarypackage. If type is not obvious, type is set to bin.
Here are examples for typical binary package split scenarios where the upstream Debian source
package name is foo:

• Generating an executable binary package foo:
– „-b’foo:bin’“, or its short form „-b’-’“, or no -b option

• Generating an executable (python3) binary package python3-foo:
– „-b’python3-foo:py’“, or its short form „-b’python3-foo’“

• Generating a data package foo:
– „-b’foo:data’“, or its short form „-b’-:data’“

• Generating a executable binary package foo and a documentation one foo-doc:
– „-b’foo:bin,foo-doc:doc’“, or its short form „-b’-:-doc’“

• Generating a executable binary package foo, a library package libfoo1, and a library develo-
pment package libfoo-dev:

– „-b’foo:bin,libfoo1:lib,libfoo-dev:dev’“ or its short form „-b’-,libfoo1,libfoo-dev’“

If the source tree contents do not match settings for type, the debmake command warns you.

145

KAPITEL 15. DEBMAKE(1)-HANDBUCHSEITE 15.6. BEISPIELE

-e, --email foo@example.org set e-mail address
The default is taken from the value of the environment variable $DEBEMAIL.

-f, --fullname ”firstname lastname” set the fullname
The default is taken from the value of the environment variable $DEBFULLNAME.

-i, --invoke [debuild|sbuild|dgit sbuild|gbp buildpackage|dpkg-buildpackage| …] invoke package build
tool

-m, --monoarch force packages to be non-multiarch

-q, --quitearly quit early before creating files in the debian directory

-v, --version show version information

-V, --verbose use --verbose for shell commands if available

-w, --with ”addon … ” set additional „dh --with“ option arguments in debian/rules
For Autotools based packages, if they install Python (version 3) programs, setting python3 as
addon to the debmake command argument is needed since this is non-obvious. But for pypro-
ject.toml based Python packages, setting python3 as addon to the debmake command argument
is not needed since this is obvious and the debmake command automatically set it to the dh(1)
command.

-x, --extra [01234] generate extra configuration files as templates (default: 2)
Please note debian/changelog, debian/control, debian/copyright, debian/rules, and debian/source/format
are required configuration files to build a modern Debian binary package.
The number determines which configuration templates are generated.

• -x0: all 5 required configuration template files. (selected option if any of these required files
already exist)

• -x1: all -x0 files + desirable configuration template files with binary package type supports.
• -x2: all -x1 files + normal configuration template files with maintainer script supports. (default)
• -x3: all -x2 files + optional configuration template files.
• -x4: all -x3 files + deprecated configuration template files.

Some configuration template files are generated with the extra .ex suffix to ease their removal. To
activate these, rename their file names to the ones without the .ex suffix and edit their contents. Exis-
ting configuration files are never overwritten. If you wish to update some of the existing configuration
files, please rename them before running the debmake command and manually merge the generated
configuration files with the old renamed ones.

-y, --yes use once to „force yes“ for all prompts, twice to „force no“

-B, --backup keep the user editted ones without .ex suffix and create template files with .ex suffix

15.6 BEISPIELE
For a well behaving source, you can build a good-for-local-use installable single Debian binary package
easily with one command. Test install of such a package generated in this way offers a good alternative to
the traditional „make install“ command installing into the /usr/local directory since the Debian package
can be removed cleanly by the „dpkg -P ’… ’“ command. Here are some examples of how to build such
test packages.

For a typical C program source tree packaged with autoconf/automake:

• debmake -i sbuild

Für einen typischen Python-(Version 3-)Modulquellbaum:

• debmake -b”:python3” -i sbuild

146

KAPITEL 15. DEBMAKE(1)-HANDBUCHSEITE 15.7. HELFERPAKETE

For a typical Python (version 3) module in the package-version.tar.xz archive:

• debmake package-version.tar.xz -b”:python3” -i sbuild

For a typical Perl module in the package-version.tar.xz archive:

• debmake package-version.tar.xz -b”:perl” -i sbuild

15.7 HELFERPAKETE
Die Paketierung könnte die Installation einiger zusätzlicher, spezialisierter Helferpakete benötigen.

• Python (version 3) programs may require the pybuild-plugin-pyproject package.

• The Autotools (autoconf + automake) build system may require autotools-dev or dh-autoreconf
package.

• Ruby-Programme könnten das Paket gem2deb benötigen.

• Node.js based JavaScript programs may require the pkg-js-tools package.

• Java-Programme könnten das Paket javahelper benötigen.

• Gnome-Programme könnten das Paket gobject-introspection benötigen.

• usw.

15.8 CAVEAT
Although debmake is meant to provide template files for the package maintainer to work on, actual
packaging activities are often performed without using debmake while referencing only existing similar
packages and „Debian Policy Manual“. All template files generated by debmake are required to be
modified manually.

There are some points for debmake:

• debmake helps to write terse packaging tutorial „Guide for Debian Maintainers“ (debmake-doc
package).

• debmake provides short extracted license texts as debian/copyright in decent accuracy to help
license review.

• „Guide for Debian Maintainers“ also serves as a tutorial with examples for the usage of debmake.

• debmake internally calls licensecheck from the licensecheck package to create debian/copyright
if it doesn’t exist.

• debmake internally calls lrc from the licenserecon package to verify debian/copyright if it already
exists.

There are some limitations for what characters may be used as a part of the Debian package. The
most notable limitation is the prohibition of uppercase letters in the package name. Here is a summary
as a set of regular expressions:

• Upstream package name (-p): [-+.a-z0-9]{2,}

• Binary package name (-b): [-+.a-z0-9]{2,}

• Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*

• Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in „Chapter 5 - Control files and their fields“ in the „Debian Policy Manual“.
debmake assumes relatively simple packaging cases. So all programs related to the interpreter are

assumed to be „Architecture: all“. This is not always true.

147

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/debmake-doc/
https://www.debian.org/doc/debian-policy/#document-ch-controlfields

KAPITEL 15. DEBMAKE(1)-HANDBUCHSEITE 15.9. DEBUG

15.9 DEBUG
Bitte berichten Sie Fehler (auf Englisch) mittels des Befehls reportbug gegen das Paket debmake.

The character set in the environment variable $DEBUG determines the logging output level.

• s: program progress logging

• p: key para[..] value logging

• P: all para[..] value logging

• d: para[”debs”] value logging

Use this feature as:

[base_dir] $ export DEBUG=spd; debmake ...

See README.md in the source for more.

15.10 AUTOR
Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

15.11 LIZENZ
Expat-Lizenz

15.12 SIEHE AUCH
The debmake-doc package provides the „Guide for Debian Maintainers“ in plain text, HTML and PDF
formats under the /usr/share/doc/debmake-doc/ directory.

See also licensecheck(1), lrc(1), dpkg-source(1), deb-control(5), debhelper(7), dh(1), dpkg-buildpackage(1),
debuild(1), quilt(1), dpkg-depcheck(1), sbuild(1), gbp-buildpackage(1), and gbp-pq(1) manpages.

148

mailto:osamu@debian.org
https://www.debian.org/doc/manuals/debmake-doc/

Kapitel 16

debmake options

Here are some additional explanations for debmake options.

16.1 Shortcut option (-i)
The debmake command offers a shortcut option.

• -i: Ausführen der Skripte zum Bau des Binärpakets

Das Beispiel in obigem „Kapitel 5“ kann so einfach wie folgt sein.

[base_dir] $ debmake package-1.0.tar.xz -i debuild

Tipp

A URL such as „https://www.example.org/DL/package-1.0.tar.xz“ for a
tarball, „https://github.com/username/package.git“ for a git repository, or
„/path/to/source_dir“ for a local source tree may be used as an argument.

16.2 debmake -b
The debmake command with the -b option provides an intuitive and flexible method to create the initial
template debian/control file. This file defines the split of the Debian binary packages with the following
stanzas:

• Package:

• Architecture: (e.g. amd64)

• Multi-Arch: (see „Abschnitt 10.10“)

• Depends:

• Pre-Depends:

The debmake command also sets an appropriate set of substvars (substitution variables) used in
each pertinent dependency stanza.

Let’s quote the pertinent part from the debmake manpage here.

-b, --binaryspec ”binarypackage[:type], … ” set the binary package specs by a comma separated list
of binarypackage:type pairs. Here, binarypackage is the binary package name, and the optional
type is chosen from the following type values:

149

https://www.example.org/DL/package-1.0.tar.xz
https://github.com/username/package.git

KAPITEL 16. DEBMAKE OPTIONS 16.3. SNAPSHOT UPSTREAM TARBALL

• bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-
string)

• data: Data (fonts, graphics, …) package (all, foreign) (alias: da)
• dev: Library development package (any, same) (alias: de)
• doc: Documentation package (all, foreign) (alias: do)
• lib: Library package (any, same) (alias: l)
• perl: Perl script package (all, foreign) (alias: pl)
• python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
• ruby: Ruby script package (all, foreign) (alias: rb)
• nodejs: Node.js based JavaScript package (all, foreign) (alias: js)
• script: Shell and other interpreted language script package (all, foreign) (alias: sh)

The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch
stanza values set in the debian/control file. In many cases, the debmake command makes good
guesses for type from binarypackage. If type is not obvious, type is set to bin.
Here are examples for typical binary package split scenarios where the upstream Debian source
package name is foo:

• Generating an executable binary package foo:
– „-b’foo:bin’“, or its short form „-b’-’“, or no -b option

• Generating an executable (python3) binary package python3-foo:
– „-b’python3-foo:py’“, or its short form „-b’python3-foo’“

• Generating a data package foo:
– „-b’foo:data’“, or its short form „-b’-:data’“

• Generating a executable binary package foo and a documentation one foo-doc:
– „-b’foo:bin,foo-doc:doc’“, or its short form „-b’-:-doc’“

• Generating a executable binary package foo, a library package libfoo1, and a library develo-
pment package libfoo-dev:

– „-b’foo:bin,libfoo1:lib,libfoo-dev:dev’“ or its short form „-b’-,libfoo1,libfoo-dev’“

If the source tree contents do not match settings for type, the debmake command warns you.

16.3 Snapshot upstream tarball
This test building scheme is suitable for git repositories organized as described in gbp-buildpackage(7),
which uses the master, upstream, and pristine-tar branches.

The upstream snapshot from the upstream source tree in the upstream VCS can be made as:

[~] $ cd /path/to/upstream-vcs
[upstream-vcs] $ debmake -p package -i debuild

If the upstream VCS is hosted in the package/ directory instead of the upstream-vcs/ directory, the
„-p package“ can be skipped.

If the upstream source tree in the VCS contains the debian/* files, the debmake command with the -i
option automates the making of a non-native Debian package from the VCS snapshot while using these
debian/* files.

[upstream-vcs] $ dch
... update debian/changelog

[upstream-vcs] $ git add -A .; git commit -m "vcs with debian/*"
[upstream-vcs] $ debmake -p package -i debuild

This non-native Debian binary package building scheme without the real upstream tarball is con-
sidered a quasi-native Debian package. See „Abschnitt 11.12“ for more details.

150

KAPITEL 16. DEBMAKE OPTIONS 16.4. DEBMAKE -B

16.4 debmake -B
The debmake command invoked with the -B option can generate template files with .ex suffix. This is
handy if you want to see auto-generated template files to the existing ones.

16.5 debmake -x
The amount of template files generated by the debmake command depends on the -x[01234] option.

• See „Abschnitt 14.1“ for cherry-picking of the template files.

Anmerkung

None of the existing configuration files are modified by the debmake command.

151

	Vorwort
	Überblick
	Voraussetzungen
	Leute bei Debian
	Wie Sie beitragen können
	Soziale Dynamik von Debian
	Technische Erinnerungen
	Debian-Dokumentation
	Hilfequellen
	Archivsituation
	Wege, beizutragen
	Neue Beitragende und Betreuer

	Werkzeugeinrichtung
	Email setup
	mc setup
	git setup
	quilt setup
	devscripts setup
	sbuild setup
	Persistent chroot setup
	gbp setup
	HTTP-Proxy
	Privates Debian-Depot
	Virtuelle Maschinen
	Local network with virtual machines

	Simple packaging
	Packaging tarball
	Gesamtbild
	Was ist Debmake?
	Was ist Debuild?
	Schritt 1: Holen der Quellen der Originalautoren
	Step 2: Generate template files with debmake
	Schritt 3: Anpassung der Vorlagendateien
	Step 4: Building package with debuild
	Step 3 (alternatives): Modification to the upstream source
	Patch by „diff -u“ approach
	Patch by dquilt approach
	Patch by „dpkg-source --auto-commit“ approach

	Basics for packaging
	Arbeitsablauf des Paketierens
	debhelper package
	Paketname und -version
	Natives Debian-Paket
	debian/rules file
	debian/control file
	debian/changelog file
	debian/copyright file
	debian/patches/* files
	debian/source/include-binaries file
	debian/watch file
	debian/upstream/signing-key.asc file
	debian/salsa-ci.yml file
	Other debian/* files

	Quality of packaging
	Reformat debian/* files with wrap-and-sort
	Validate debian/* files with debputy

	Sanitization of the source
	Fix with Files-Excluded
	Fix with „debian/rules clean“
	Fix with extend-diff-ignore
	Fix with tar-ignore
	Fix with „git clean -dfx“

	More on packaging
	Package customization
	Customized debian/rules
	Variables for debian/rules
	New upstream release
	Manage patch queue with dquilt
	Build commands
	Note on sbuild
	Special build cases
	Upload orig.tar.xz
	Skipped uploads
	Bug reports

	Advanced packaging
	Historical perspective
	Current trends
	Note on build system
	Continuous integration
	Bootstrapping
	Compiler hardening
	Reproduzierbares Bauen
	Substvar
	Bibliothekspaket
	Multiarch
	Aufteilung eines Debian-Binärpakets
	Pakettrennungsszenarien und -beispiele
	Multiarch library path
	Multiarch header file path
	Multiarch *.pc file path
	Bibliothekssymbole
	Library package name
	Bibliotheksübergänge
	biNMU-sicher
	Fehlersuchinformationen
	-dbgsym package
	debconf

	Packaging with git
	Salsa repository
	Salsa account setup
	Salsa CI service
	Branch names
	Patch unapplied Git repository
	Patch applied Git repository
	Note on gbp
	Note on dgit
	Patch by „gbp-pq“ approach
	Manage patch queue with gbp-pq
	gbp import-dscs --debsnap
	Quasi-native Debian packaging
	Git commit history organization

	Tipps
	Build under UTF-8
	UTF-8 conversion
	Hints for Debugging

	Tool usages
	debdiff
	dget
	mk-origtargz
	origtargz
	git deborig
	dpkg-source -b
	dpkg-source -x
	debc
	piuparts
	bts

	Weitere Beispiele
	Cherry-pick templates
	Kein Makefile (Shell, CLI)
	Makefile (Shell, CLI)
	pyproject.toml (Python3, CLI)
	Makefile (Shell, GUI)
	pyproject.toml (Python3, GUI)
	Makefile (Paket mit einem Programm)
	Makefile.in + configure (Paket mit einem Programm)
	Autotools (Paket mit einem Programm)
	CMake (Paket mit einem Programm)
	Autotools (Paket mit mehreren Programmen)
	CMake (multi-binary package)
	Internationalization
	Details

	debmake(1)-Handbuchseite
	BEZEICHNUNG
	ÜBERSICHT
	BESCHREIBUNG
	Positional arguments
	Options
	BEISPIELE
	HELFERPAKETE
	CAVEAT
	DEBUG
	AUTOR
	LIZENZ
	SIEHE AUCH

	debmake options
	Shortcut option (-i)
	debmake -b
	Snapshot upstream tarball
	debmake -B
	debmake -x

